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Chapter 13
Microbial Nitric Oxide, Nitrous Oxide,
and Nitrous Acid Emissions from Drylands

Thomas Behrendt, Nurit Agam, and Marcus A. Horn

1 Introduction

Reactive nitrogen compounds (Nr, which include NOx (i.e., NO+NO2), N2O, ammo-
nia, and HONO) have a large impact on atmospheric chemical composition and,
thus, on climate. Nitric oxide (NO) is a chemically reactive trace gas that reacts with
ozone (O3) to form NO2 (Crutzen 1979). The formation of O3 depends on a sensitive
relationship between NOx (NO+NO2) and volatile organic compounds (VOC)
(Sillman et al. 1990). Thus, even trace levels of NOx can activate O3 production.
O3 itself can enrich the troposphere and as a short-lived climate pollutant (SLCP) can
affect the climate (Shoemaker et al. 2013). Nitrous oxide (N2O) is among the most
important greenhouse gases, together with H2O, CO2, and CH4. N2O has a relatively
long lifetime, is enriched in the troposphere, and impacts the earth’s radiative
balance (Ciais et al. 2013). When N2O enters the stratosphere, it reacts with O3 to
NO, thereby depleting the ozone layer (Crutzen 1979).

In 2005, a total of about 187 Tg N reactive nitrogen compounds (Nr) were emitted
into the atmosphere (Galloway et al. 2008). Deposition of atmospheric Nr in a
dryland ecosystem was 29.3 kg N ha�1 yr�1 (Sickman et al. 2019). The deposition
of N-acids, which is commonly referred to as acid rain, leads to an increase in
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acidification in terrestrial and aquatic ecosystems (Galloway 1995). Globally,
8.9 Tg N yr�1 NOx and 9.4 Tg N yr�1 N2O (natural soils and agriculture) are
released from soils into the atmosphere (Denman et al. 2007). NOx emissions from
soils are on the order of about one-third of overall anthropogenic sources, which
originate from burning of fossil fuel from car engines and industrial processes
(Denman et al. 2007). The N2O emissions from soils are the strongest global source
where 0.7% and 0.9% of N-fertilizer is released as NOx and N2O, respectively
(Bowman et al. 2002). Continuous acceleration of the nitrogen cycle will result in
an increased pollution of air, soils, and water, and mitigation strategies for sustain-
able protection of the environment and human health are needed (Galloway et al.
2008).

A global inventory of NO emissions from soils, based on 112 studies with
583 NOx emission rates worldwide, has been provided by Steinkamp and Lawrence
(2011). Their estimate of the global NO soil source strength is 8.6 Tg N yr�1, which
is very close to the most recent IPCC (2007) estimate of 8.9 Tg yr�1. Data from field
measurements for NO emissions from desert soils are limited (McCalley and Sparks
2008; Hartley and Schlesinger 2000). However, more than 40% of the surface area
of the earth is covered by drylands (UNEP 1997) and, thus, the study of Nr emissions
from semiarid and arid ecosystems is of great importance. Recently, it was discov-
ered that especially alkaline soils from semiarid and arid ecosystems can emit nitrous
acid, HONO (Oswald et al. 2013). When exposed to solar radiation (and more
specifically to radiation at the wavelength of λ ¼ 578 nm), HONO is an indirect
source of NO in the atmosphere due to photolysis to the hydroxyl radical
(OH) and NO.

Additionally, soils from irrigated agriculture in all drylands are heavily fertilized
and release high NO emissions, thereby affecting regional air quality (Behrendt et al.
2017). In this chapter, a description of recent discoveries and advances in the
processes of the biogeochemical N-cycle and their relationship to environmental
parameters is presented, followed by a discussion pertaining to current advances in
NO and N2O emissions from semiarid and arid lands.

2 Biogenic Emission of NO, N2O, and HONO from Soils,
Cryptogamic Covers, and Plants: General Aspects

Microbes are able to enzymatically produce and consume both, NO and N2O, in soils
(Conrad 1996). It is widely accepted that nitrification and denitrification are the
predominant processes responsible for NO and N2O release. However, the recycling
of Nr within soils due to simultaneous microbial consumption is likely to be small.
For natural dryland soils, studies have detected only very low rates of NO consump-
tion (Behrendt et al. 2014). There is evidence that thin biofilms of lichens and mosses
predominantly covering the top soil layer in drylands, which are called cryptogamic
covers or biocrusts, release globally 0.6 Tg N yr�1 HONO, 1.1 Tg N yr�1 NO
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(Weber et al. 2015), and about 0.3 Tg N yr�1 N2O (Lenhart et al. 2015). These
biocrusts are microscale films and are habitat for various microbes. With an increase
in crust development, inorganic nitrogen typically increases (Kidron et al. 2016),
consequently affecting gaseous N-oxide-emissions. It was also found that the abun-
dance of ammonia-oxidizing Archaea (AOA) increases with aridity as indicated by
quantification of their amoA (encoding the ammonia monooxygenase, AMO) genes
(Delgado-Baquerizo et al. 2016). Recently, it was found that biocrusts can drive NO
emissions from dryland soils under limited soil moisture (Behrendt et al. 2017). A
moisture-dependent response of nitrifying microbial communities to wetting of dry
soil was also reported by an earlier study (Placella and Firestone 2013), where the
samples dried in the laboratory. More of such timely studies, where flux measure-
ments are combined with molecular techniques, are needed to identify the biogeo-
chemical processes responsible for sources and sinks of N-gases. This newly
emerged research field is referred to as gas metabolomics or “volatilomics” (e.g.,
Insam and Seewald 2010).

NO and N2O fluxes are controlled by various environmental parameters such as
(1) gaseous diffusion (e.g., oxygen, carbon dioxide), (2) substrate diffusion, (3) soil
temperature, (4) soil moisture, (5) ambient mixing ratio of NO and N2O, and (6) soil
properties, e.g., pH, carbon content, and redox potential (Butterbach-Bahl et al.
2013; Pilegaard 2013). There is an urgent need to understand the potential negative
and positive contributions of soil microbes to soil–atmosphere exchange of trace
gases and complex microbe–microbe, microbe–environment, and microbe–plant
interactions with a focus on climate change (Bardgett et al. 2008). In dryland soils,
soil temperature and soil moisture are highly variable and affect microbial activity
(Chap. 11; Moyano et al. 2013; Behrendt et al. 2014, 2017), thereby causing
variability in NO and N2O fluxes in time and space. Since the focus of this review
is on NO and N2O emissions from drylands, where coverage of plants is sparse or
absent, emissions from plants will only be briefly discussed. There is indication that
plants emit N2O during photosynthesis (Lenhart et al. 2018; Smart and Bloom 2001;
Hakata et al. 2003; Dean and Harper 1986; Goshima et al. 1999), but this process is
not yet considered on a global scale (Denman et al. 2007). While earlier studies
report compensation point concentrations (production and consumption are balanced
resulting in a zero net flux) for NO2 from plants, recent studies provide evidence that
these compensation point concentrations are very low if at all existing (Breuninger
et al. 2012 and references therein; Chaparro-Suarez et al. 2011). This suggests that
plants act predominantly as a small NO2 sink.

Given the small quantities of NO and N2O emissions from drylands, monitoring
of these emissions poses a challenge because monitoring of these emissions requires
a large instrumentation setup. The most frequent techniques to measure NO and N2O
are (1) dynamic and static chambers in laboratory incubations (Behrendt et al. 2014),
dynamic and static chambers in the field (Pape et al. 2009; Hutchinson and Mosier
1981), and eddy covariance (Rummel et al. 2002; Eugster and Merbold 2015).
Recent developments in instrumentation provide highly sensitive chemilumines-
cence trace level analyzers (Behrendt et al. 2014), quantum cascade laser absorption
spectroscopy (including the measurement of isotopologues for N2O), and
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fiber-enhanced Raman spectroscopy (Keiner et al. 2015), as well as ground-based
and satellite-borne sensors (Mamtimin et al. 2015, 2016). Comparisons between the
methods showed a good agreement between, e.g., (1) soil chambers with gradient
method (Parrish et al. 1987), (2) soil chambers with laboratory incubations (Ludwig
et al. 2001), and (3) laboratory incubations with remote sensing techniques
(Mamtimin et al. 2015).

2.1 Soil–Atmosphere Exchange of NO, N2O, and HONO:
Processes

Soil processes are classified into abiotic (reactions based on chemical and physical
principles) and biotic processes (that involve microbial metabolism). Abiotic forma-
tion of NO occurs in acidic and organic-rich soils (Homyak et al. 2017), whereas
abiotic formation of N2O is based on the interaction between pH, organic matter, and
MnO2. However, there is still a need to combine flux measurements with additional
analysis of composition and diversity of microbial community characteristics
(Butterbach-Bahl et al. 2013; Pilegaard 2013) to gain a full understanding of abiotic
processes. Linking flux measurements to the activity of certain microbial groups
(Behrendt et al. 2017; Kolb and Horn 2012) may be useful to improve biogeochem-
ical processes in models. Within the N-cycle, microbes utilize a set of oxygen-
demanding and oxygen-sensitive enzymes, which either produce or consume NO
and N2O (Klotz and Stein 2011). Thus, NO and N2O are intermediates of the N-cycle
subject to rapid microbial turnover. The expression of specific genes, e.g., bacterial
amoA or narG/nosZ (encoding nitrate and nitrous oxide reductases), can be used as a
proxy for the activity of ammonia-oxidizing and ammonia-denitrifying bacteria,
respectively (e.g., Behrendt et al. 2017; Palmer et al. 2016). Such proxies have
been established for all major microbial groups involved in the N-cycle in soils.
However, there is still an ongoing discussion to what extent these results reflect
enzyme synthesis (Rocca et al. 2015; Blazewicz et al. 2013). The soil–atmosphere
exchange of NO and N2O is a result of the metabolism of various microbial groups,
and variations that occur in gas exchange at the microsite scale consequently matter.
Nevertheless, regional gas exchange is controlled by variations in environmental
parameters. Therefore, abiotic and biotic processes (for overview, see Fig. 13.1) and
environmental parameters are considered next.

2.1.1 Chemodenitrification

The abiotic production of NO and N2O but also other reactive N-gases such as NO2

and methyl nitrite was reported for soils with low pH (pH < 5.5) and high concen-
trations of iron cations (Fe2+) and organic matter (Van Cleemput and Samater 1996).
There is evidence that in drylands, where water is limited, a shift from biotic to
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abiotic processes for NO production occurs (Homyak et al. 2017; McCalley and
Sparks 2009). About two decades ago, Venterea and Rolston (2000) stated that for
improved NO/N2O modeling, it is necessary to understand the abiotic reactions
involving liquidNO2�/HNO2 and gaseous NO2/HONO. A recent study suggests that
quinone redox chemistry is mediating NO2 conversion to HONO and highlights
abiotic processes at the soil surface (Scharko et al. 2017). Microbially produced
hydroxylamine can react in the gas phase on mineral surfaces to form HONO (Ermel
et al. 2018). Manganese dioxide (MnO2) acts as a strong oxidant in soils and
therefore plays a central role in N2O formation from hydroxylamine.

2.1.2 Biological Nitrogen Fixation (BNF)

The atmosphere provides a stable pool of N2 for biological N-fixers. However,
the large investment of energy required for BNF (Madigan et al. 2012) might be a
reason why N-fixing microorganisms (i.e., diazotrophs) are not successful in utiliz-
ing their advantage compared to non-diazotrophs even in N-limited ecosystems.

Fig. 13.1 The major processes of the biogeochemical nitrogen cycle (modified from Su et al. 2011
and Klotz and Stein 2011). Note that arrows for hydroxylamine oxidation and HONO release
mechanisms are in dots, since the portion of abiotic and biotic contribution is unclear. The anaerobic
ammonia oxidation (Anammox) arrows are dotted, since the importance of this process in soils is
unclear
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N-assimilation outweighs N-depositions by far in many ecosystems like N-limited
wet- and drylands (Knorr et al. 2015; Borken et al. 2016; Larmola et al. 2013;
Su et al. 2011). Such ecosystems depend on N-fixing microorganisms (i.e.,
diazotrophs) that provide Nr to other organisms including plants for assimilation.
Symbioses of diazotrophs with plants might accelerate N fixation dramatically. BSC
of drylands host a symbiotic microbial community that likewise depends on the
transfer N from diazotrophs that are active over a wide range of temperatures, and
moisture contents (Aranibar et al. 2003) contribute to ecosystem resilience in
drylands. Diazotrophy can indeed be the major source of reactive N in such systems
(Su et al. 2011), demonstrating that diazotrophs are cornerstone organisms in
drylands. The increase of biological N fixation from 44 Tg N yr�1 in the
preindustrial period to about 195 Tg N yr�1 (Cleveland et al. 1999) suggests that
anthropogenic alteration of the N-cycle has been larger than previously assumed
(Vitousek et al. 2013). Land-use change in drylands decreases biological nitrogen
fixation from natural soils, especially from conversion of late to early successional
stages of biological soil crusts that routinely show diazotrophic activities (Housman
et al. 2006; Belnap 2002).

2.1.3 Nitrification

Nitrification is the microbial oxidation of ammonia to nitrate. Most nitrifiers are
autotrophic organisms and thus use carbon dioxide as their source of carbon. The
first microbial group is ammonia-oxidizing bacteria (AOB), which performs the
oxidation of ammonia, via hydroxylamine, to nitrite (Ward et al. 2011). The
enzymes are ammonia monooxygenase (AMO) and hydroxylamine oxidoreductase
(HAO). Hydroxylamine has been discovered as an obligate intermediate long ago
(Lees 1952), whereas NO as an obligate intermediate was discovered just recently
(Caranto and Lancaster 2017). Thus, the search for a third enzyme in the biological
oxidation of ammonia to nitrite continues. The second group is ammonia-oxidizing
archaea (AOA), which is challenging to cultivate (Könneke et al. 2005; Jung et al.
2011). Differences in metabolism, kinetics, and specialization to ecosystems and
environmental parameters lead to the question of niche differentiation of AOB and
AOA (Prosser and Nicol 2012; Hatzenpichler 2012; Martens-Habbena et al. 2009).
AOB can utilize enzymes that are homologous to denitrifier enzymes that reduce
NO2� to NO and further to N2O (Casciotti and Ward 2001, 2005). This process is
referred to as nitrifier denitrification (Wrage-Mönnig et al. 2018; Kool et al. 2011).
The third group is nitrite-oxidizing bacteria (NOB), which convert nitrite to nitrate
via the enzyme nitrite oxidoreductase, NXR (Sorokin et al. 2012). It is thought that
AOB and AOA are main producers of NO and N2O compared to NOB. The
exhalation of NO and N2O is being investigated for decades (Galbally and Roy
1978; Lipschultz et al. 1981). HONO, a new indirect source of NO, was discovered
(Su et al. 2011; Oswald et al. 2013). The latter is a product of AOB and AOA
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metabolism (Scharko et al. 2015), but produced from a heterogeneous reaction of
gaseous hydroxylamine on the soil surface (Ermel et al. 2018). Recently, complete
ammonia oxidizers (COMAMMOX) have been discovered, which are capable of
complete nitrification (Van Kessel et al. 2015; Daims et al. 2015). For completeness,
heterotrophic nitrification (HN) is included here. Dominant HN was found most
likely due to saprophytic and fungal activity in acidic coniferous forest soils (Zhang
et al. 2011), where conditions for other nitrifiers are unfavorable. In such ecosys-
tems, HN could dominate NO and N2O exchange.

2.1.4 Denitrification

Complete denitrification is the microbial reduction of nitrate (NO3�) to N2 via nitrite (
NO2�), NO and N2O as the obligatory intermediates (Knowles 1982). Denitrifiers are
facultative organisms that preferentially respire oxygen and switch to denitrification
when oxygen becomes limiting and N-oxides are available (Zumft 1997). In soils,
various groups of denitrifiers have been identified, including a phylogenetically
highly diverse group of mostly heterotrophic bacteria (Philippot et al. 2007, 2009;
Palmer et al. 2010, 2012; Palmer and Horn 2012, 2015), fungi (Kobayashi et al.
1996), some archaea (Zumft 1997), as well as algae, lichens, and mosses in soil
crusts (Barger et al. 2013). The denitrifying enzymes are nitrate reductase (NAR),
nitrite reductase (NIR), NO reductase (NOR), and N2O reductase (NOS, Philippot
2002; Zumft 1997). The study of the activity of these enzymes in soils and their
controls is partly limited by experimental methods (Gross and Bemner 1992;
Bollmann and Conrad 1997). For example, it is almost impossible to differentiate
denitrification from nitrification-derived N2O production in the field. For details
about diversity, structure, and size of the denitrifier community, the reader is referred
to a more comprehensive review (Braker and Conrad 2011, and references therein).
The regulation of the expression of denitrification-associated genes, which have
been identified for N2O production and consumption, is dependent on oxygen and
NO concentration (Spiro 2012; van Spanning et al. 2007). Denitrification is pro-
moted under microaerophilic and anoxic conditions, e.g., in anoxic microsites. pH is
an important parameter affecting gene abundance, transcription, and denitrification
kinetics (Liu et al. 2010) as well. There is indication that water absorption on
decomposing plant residues and the presence of pores >35 μm in diameter create
N2O hotspots on a microscale in soil (Kravchenko et al. 2017; Schlüter et al. 2018).
N2O consumption and the different microbial groups capable of this process and
their controls by environmental parameters is not yet well understood (Kolb and
Horn 2012; Chapuis-Lardy et al. 2007). Recent flux measurements are now more
often accompanied either by molecular analysis and/or 15N and 18O isotopic mea-
surements to increase the understanding of which process dominates the NO and
N2O exchange.
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2.1.5 Other Microbial Processes Relevant for N-Gas Exchange

One prominent example is the aerobic consumption of NO performed by
methanotrophs, which links the N and C cycle in the gas phase (Stein and Klotz
2011; Ren et al. 2000; Krämer et al. 1990; Bender and Conrad 1994). Anaerobic
ammonia oxidation is a process similar to denitrification, where ammonia is
converted viaNO2� to produce N2 (Strous et al. 2006, 1999), which has an important
role in the N-cycle in the oceans (Ward 2003). The importance of this process for
N-cycling in soils is not yet known. Codenitrification (Spott et al. 2011) and
dissimilatory nitrate reduction to ammonia (DNRA) are mentioned here for a
complete review, but due to low organic matter and lack of moisture, their impor-
tance in dryland soils is expected to be low and thus is not further discussed.

2.1.6 Transport Processes in Soil, Canopy, and Surface Boundary
Layers

For microbial activity (as approximated by CO2 production here), a single optimum
function at intermediate soil moisture (volumetric water content approximately
θv ¼ 0.5 � ε, where ε equals the total porosity, saturated water content) was
found (Skopp et al. 1990; Moyano et al. 2013). This single optimum function is
shifted to low soil moisture for NO and HONO emissions (Oswald 2014). Thus, it
seems likely that this pattern in NO and HONO emissions is controlled by abun-
dance and activity of the nitrifying community. An additional controller might be
CO2 diffusion, since most nitrifiers are autotrophs. For some soils, a bimodal
distribution of NO emission was observed, with one maximum at low water content
and the other at high water content (Yu et al. 2008; Behrendt et al. 2017). It was
demonstrated by gene expression that nitrifier and denitrifier contribute to this
bimodal distribution (Behrendt et al. 2017). More energy-rich organic substrates
are available under high moisture conditions, thus promoting activity of heterotrophs
including denitrifiers, and NO and O2 diffusion coefficients are very low at about
2 � 10�9 m2 s�1 (see Table 13.1). The latter promotes the enrichment of NO and
consumption of O2 and thus conditions ideal for onset of denitrification.

Once the gases are released from the soil into the atmosphere, they may chem-
ically react, interact with plant canopy, and dilute via mixing and transport. Within
the canopy, NO reacts rapidly with O3 and forms nitrogen dioxide (NO2). The

Table 13.1 Compilation of diffusion coefficients (D) for oxygen (O2) and nitric oxide (NO) in air
and water

DO2 DNO References

Water 2.13 � 10�9 m2 s�1 2.21 � 10�9 m2 s�1 Goldstick and Fatt (1970), Zacharia and
Deen (2005) at 25 �C and atmospheric
pressure

Air 1.82 � 10-5 m2 s-1 1.80 � 10�5 m2 s�1 Massman (1998) at standard pressure
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so-called canopy reduction factor (CRF) is used to describe the amount of NOx,
which is used to reduce the soil emissions into the free atmosphere due to reactions
within the canopy, e.g., stomatal uptake.

2.2 Soil–Atmosphere Exchange of NO, N2O, and HONO:
Environmental Parameters

In the following subsections, the most dynamic environmental parameters affecting
the production and consumption processes of NO and N2O will be discussed. Other
environmental parameters, such as soil properties (e.g., pH, carbon content, texture),
may affect NO and N2O emissions too, but their dynamics are commonly investi-
gated on a larger scale in time and space (Chap. 11). Agricultural practices (e.g.,
irrigation, plowing, liming, burning, herbicide/fungicide applications), however, are
commonly only applied at field scale. While for NO emissions from soil into the
atmosphere, only the top layer of soil is of relevance (Rudolph et al. 1996), much
deeper layers are also of relevance for N2O emissions. In middle to upper soil layers,
the produced N2O is partly consumed and only a fraction is released into the
atmosphere (filter function).

2.2.1 Nitrogen Availability and Fertilization

Fertilizer application to increase yields is a common practice to secure food for a
growing global population. However, the microbial processes, especially nitrifica-
tion and denitrification, are dependent on NH4

+, NO3� , and NO2� as substrates.
Application of fertilizers thus results in agricultural fields emitting more N2O and
NO than natural soils. Within the available literature, various correlations between
different nitrogen species and N-gases can be found; however, they are not consis-
tent and very soil specific. One reason may be that nitrogen availability affects N2O
and NO emissions in several ways: (1) the amount of fertilizer (FA), (2) the
amplification factor defined as a dimensionless increase in gaseous emissions com-
pared to a non-fertilized control soil, (3) an increased temperature response based on
fertilization (Q10F), and the type of fertilizer (Mosier et al. 1998; Mamtimin et al.
2016). Urea is the predominant nitrogen fertilizer with 54% of overall nitrogen
fertilizer used (IFA 2018). Mixtures of fertilizers, such as diammonium phosphate
and coated forms (e.g., polyolefin-coated fertilizers, POCFs), tend to yield lower
gaseous emissions (Fechner, unpublished data; Shoji and Kanno 1994). Based on the
N demand, the total amount of fertilizer applied in one growing season should be
divided with largest amounts applied in stages of rapid growth (Chen et al. 2011). A
fertilization factor was applied to laboratory NO measurements, assuming an expo-
nential decay function, to model net potential NO emissions for the growth season
2010 in the field (Mamtimin et al. 2016). Also urine applications (Khan 2009), wet
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and dry deposition (Jia et al. 2016) and plant residuals (Harrison et al. 2002) increase
gaseous N emission. About 1.0% of N-fertilizer was emitted as NO in a recent study
(Steinkamp and Lawrence 2011), which is similar to 0.9% of N-fertilizer released as
N2O reported from earlier studies (Bouwman et al. 2002a, b). Recent and future
focus of studies should be the establishment of management practices for constant
yields under optimal N-fertilization to decrease gaseous N emissions (Matson et al.
1998; Ju et al. 2009; Chen et al. 2011).

2.2.2 Soil Water Content

The relative fluxes of nitrogen trace gases depend on the soil water content
(expressed as water-holding capacity, WHC, and water-filled pore space, WFPS)
(Fig. 13.2; Oswald et al. 2013). This conceptual model was proposed by Firestone
and Davidson (1989) for NO, N2O, and N2. Diffusion is dependent on soil water
content (Skopp et al. 1990), which therefore is an indirect controller of denitrification
(e.g., O2 and NO concentration) and nitrification (e.g., O2 and NH3 concentration).

It is well known that at WFPS > 60% denitrification dominates, while at
WFSP < 60% nitrification dominates (Davidson 1993). Interestingly, the initiation
of HONO emissions was reported at about 33% WHC or 40% WFPS, when N2O

Fig. 13.2 The relationship between percent soil moisture (expressed as water-holding capacity,
WHC, and water-filled pore space, WFPS) and the relative fluxes of nitrogen trace gases (from
Oswald et al. 2013, adopted from Firestone and Davidson 1989). Recently, a second HONO
maximum at high soil moisture was discovered
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emissions decrease to zero (Oswald et al. 2013). There is evidence for a delicate
balance between microbial oxidation of Mn2+ and reduction of Mn oxides (Sparrow
and Uren 2014). It was shown for artificial soil mixtures that the abiotic formation of
N2O from NH2OH depends on the Mn-form, pH, and organic matter (Liu et al.
2017). However, such studies are lacking to date for natural soils. Thus, it is
hypothesized that in natural soils, the availability of Mn-form depends on soil
moisture and soil temperature (Sparrow and Uren 2014), affects N2O and potentially
HONO formation, and deserves future research. It is also noteworthy that some
dryland agricultural soils do not follow the conceptual model of a single NO
optimum, but rather show two distinct NO emission maxima (Behrendt et al. 2017).

2.2.3 Soil Temperature

Production and consumption of NO and N2O is catalyzed by various microbial
enzymes (see Sects. 2.1.3 and 2.1.4). It is well known that enzymatic reactions can
be described with Michaelis–Menten kinetics (Michaelis and Menten 1913), and are
exponentially dependent on temperature. One way to model the relationship of
temperature and NO and N2O emissions is the use of a temperature amplification
factor, known as the Q10-value. It is generally accepted that Q10 values for (micro)
biological processes under non-limiting conditions (here: water availability and soil
substrate) are in the order of 2–3 (Schipper et al. 2014). Exponential relationship of
soil temperature and NO emissions was first demonstrated in a laboratory experi-
ment (Yang et al. 1996).

For a soil sample from the Taklimakan Desert, where gravimetric soil water
content in the field was around 0.81%, a similar exponential relationship of NO
emissions and soil temperature was found (Fig. 13.3). Q10 values for NO emissions
from that soil were in the range of 1.4–1.6. It is still under debate if these NO
emissions at very low soil moisture are of abiotic or microbial origin (Sullivan et al.
2012; Behrendt et al. 2017; McCalley and Sparks 2009). There is also evidence that
different end-products, e.g., N2O and N2, generated by different enzymatic reactions
differ in their Q10 values by about 2 and 1.4, respectively (Phillips et al. 2014).

2.2.4 Ambient Mixing Ratio for NO, N2O, and HONO

The compensation concentration, ccomp, below which net emissions to the atmo-
sphere occur, was introduced as a critical variable that controls the flux of trace gases
in soil–atmosphere exchanges (Conrad 1994). The use of ccomp was suggested for
scaling trace gas fluxes in soil–atmosphere exchange (Conrad and Dentener 1999)
and was frequently applied in modeling NO emissions (Bargsten et al. 2010; Feig
et al. 2008; Yu et al. 2008; Kirkman et al. 2001). Behrendt and coworkers (2014)
have concluded that only NO production can be detected from dryland soils. For a
soil sample from a blueberry covered spruce forest (pH 3.2; 41.00% carbon), they
found the lowest ccomp of 47 ppb, whereas for a soil sample from the Mongolian
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Desert, they estimated ccomp to amount to about 6590 ppb (pH 7.9; 0.96% carbon). It
is well known that fungal activity dominates in acidic and organic-rich coniferous
forest soils (Pennanen et al. 1998). Often heterotrophic activity is related to denitri-
fication (see Sect. 2.1.4) and therefore ccomp might be correlated to different micro-
bial processes. N2O consumption occurs in soils, even at low pH and atmospheric
N2O concentrations (Kolb and Horn 2012; Palmer and Horn 2015; Palmer et al.
2010). N2O consumption is generally not well understood (Chapuis-Lardy et al.
2007), because N2O net fluxes are more commonly studied, where it is thought that
N2O production is the main contributor to N2O emissions. Ultimately isotopic
measurements are necessary to disentangle heterotrophic nitrification (Zhang
et al. 2011), (complete) denitrification, and co-denitrification (Kumon et al. 2002).
However, high NO consumption already points toward denitrification and
co-denitrification. Moderate ccomp values of 506 and 600 ppb have been reported
from dryland farming soils in China (Behrendt et al. 2014) and Egypt (Saad and
Conrad 1993), respectively. In dryland agriculture, the lack of organic matter as well
as water (irrigation regime, see Mamtimin et al. 2016: about 24 h flooding followed
by a 2 weekly phase of evaporation) may explain why low abundance and activity of
(heterotrophic) denitrifiers have been found in such soils (Behrendt et al. 2017). Low
denitrifier diversity and activity was also found for Chilean arid soils (Orlando et al.
2012). HONO fumigation experiments indicate that ccomp for HONO is likely the
result of multiple processes possibly including microbial processes, chemical reac-
tions on the soil surface, and adsorption/desorption effects (Ermel 2014). The study
of compensation concentrations is important for scaling fluxes and additionally to
target the identification of separate biological and chemical processes involved in
production and consumption of NO, N2O, and HONO.

Fig. 13.3 The relationship between soil temperature and the net flux of nitric oxide
(NO) determined by laboratory incubation of a bare soil taken from the semiarid Taklimakan
Desert at 0.81% gravimetric soil moisture (close to Sache oasis, Xinjiang, China, N ¼ 3)
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2.3 Soil–Atmosphere Exchange of NO, N2O, and HONO:
Novel Isotopic Tools

Different isotopic approaches have recently been developed to follow the (microbial)
pathways for production of NO, N2O, and HONO. Slightly different methods have
been developed using either chromium trioxide (CrO3) or the excess of ozone (O3) to
convert NO into gaseous NO2 which is trapped in a solution asNO2� andNO3� , after
the denitrifier conversion method is used and 15N2O is measured (Yu and Elliott
2017; Kang et al. 2017). Labeling and stable isotopes and isotopomers of N2O
demonstrated the tracing of the source by either nitrification or denitrification
(Wrage-Mönnig et al. 2018; Buchen et al. 2018; Park et al. 2011; Wrage et al.
2005; Pérez et al. 2000) and finally allowed the quantification of archaeal N2O
production (Jung et al. 2013). 15N-labeled urea was applied, and a method to follow
the biogenic HO15NO emissions from soils was established (Wu et al. 2014a, b).
Isotopic methods have been also applied for separating NO production (Kang et al.
2017) and N2O consumption (Lewicka-Szczebak et al. 2017; Wen et al. 2016). 15N
tracer experiments for NH4

+, NO3� , and NO2� (Russow et al. 2009) have validated
the hypothesis of a diffusion limit for NO emissions (Firestone and Davidson 1989;
Skopp et al. 1990; Skiba et al. 1997). Thus, diffusion of NO out of the cell is limited
under elevated soil moisture and anaerobic conditions (0–0.2% O2) and almost all
NO can be converted to N2O before it escapes into the atmosphere (Russow et al.
2009). This explains why previous studies on NO have been conducted only for a
thin layer of topsoil (Rudolph et al. 1996; Behrendt et al. 2014; Bargsten et al. 2010;
Feig et al. 2008; Yu et al. 2008; Remde et al. 1989), which is not limited by
constraints of molecular diffusion. Recent studies also highlight that this soil surface
layer plays an important role for multiple chemical reactions, which impact various
forms of gaseous Nr release into the atmosphere (Ermel et al. 2018; Liu et al. 2017;
Scharko et al. 2015; Oswald et al. 2013). 15N isotopic fractionation factors for
nitrification (αs/p) revealed an optimum function with maximum αs/p at field capacity
of about 1.031, which might be the result of N-transport in the form of NH4

+ supply
within the microbial cells and NH3 oxidation via enzymatic catalysis (Yun and Ro
2014).

3 Microbial NO, N2O, and HONO Emissions from
Semiarid and Arid Soils

Earlier studies found an increase in NO and N2O emissions on the order of 10–100
times after rainfall (Davidson and Kingerlee 1997; Verchot et al. 1999; Ludwig
et al. 2001; Hartley and Schlesinger 2000). For soils from the Mojave Desert,
0.08–1.9 ng m�2 s�1 NO emissions were reported with a potential emission of up
to 34 ng m2 s�1 under simulated rainfall conditions in the laboratory (McCalley and
Sparks 2008). A modeling study for atmospheric NOx emissions from bare soils
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found slightly higher values (Steinkamp and Lawrence 2011). HONO emissions,
which comprise a major fraction of gaseous nitrogen loss especially from dryland
soils under low soil moisture, may explain this difference (Oswald et al. 2013). In
contrast, when soils dry out, N substrates concentrate in hydrologically disconnected
microsites, which generate, together with N uptake from plants, a hot spot character
of NO and N2O emissions in drylands (Homyak et al. 2016). Hence, the spatial
variability of NO, N2O, and HONO emissions from drylands may be considerable. It
is assumed that gaseous N emissions will further increase, predominantly in regions
where dryland farming is intensified under fertilization and irrigation practices
(Mamtimin et al. 2016). The type of fertilizer seems also important, since HONO
(and N2O) emissions depend on the microbial intermediate hydroxylamine (Ermel
et al. 2018; Liu et al. 2017; Wu et al. 2014a, b), which is thought to be produced in
larger quantity from urea and NH4

+ fertilizers than from fertilizer mixtures. For
example, nitrate concentrations in air samples originated from the Taklimakan
Desert under non-dust, floating dust, and dust storm conditions were 3.81 � 1.24,
2.95� 0.69, and 4.99� 1.71 μg m�3, respectively (Wu et al. 2014a, b). It is still not
known to which extent this nitrate is blown out from heavily fertilized soils or
originated from chemical reactions in the desert atmosphere. However, similar
elevated nitrate concentrations have been reported from other deserts (Turpin et al.
1997). The magnitude of biogenic soil NO emissions for dryland soils is on the lower
range of NO emissions (Steinkamp and Lawrence 2011), but the area is large (UNEP
1997). Also the potential of NO emissions due to non-water rainfall inputs has not
been studied yet. Therefore, it is thought that the nitrogen cycle in drylands is of
global relevance.

3.1 The Role of Non-rainfall Water Inputs and Soil
Temperature

The limited rainfall in drylands has led the scientific community to assume that
microbial abundance and activity in these areas is low. However, microbial life was
even found in the middle of the Atacama Desert, the driest place on Earth (Maier
et al. 2004). Recent studies demonstrate that physical vapor adsorption from the
atmosphere by the desert soil, a form of non-rainfall water input, is very frequent
(Agam and Berliner 2006; Ravi et al. 2006). The adsorbed water penetrates the first
few (3–5) centimeters of the topsoil (Agam and Berliner 2004). There is strong
evidence that these non-rainfall water inputs control CO2 efflux (Hugh et al. 2015).
New studies have found that high NO (and HONO) emission occurred in soils during
very low soil moisture of<2% gravimetric soil moisture (Behrendt et al. 2014, 2017;
Mamtimin et al. 2016; Oswald et al. 2013, see also Fig. 13.4). Similar maximum NO
emissions under very low soil moistures have been found in the Kalahari and
Chihuahuan Desert (Aranibar et al. 2004; Hartley and Schlesinger 2000). Maximum
CO2 production was used as a proxy for activity of the overall microbial community,
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which was observed at about θv ¼ 0.5 � ε (Skopp et al. 1990; Moyano et al. 2013).
This finding demonstrates that NO (and HONO) emissions from dryland soils at very
low soil moisture are not correlated to the maximum relative soil emission at about
60% WFPS (Fig. 13.2). CO2 production from soils under elevated soil moisture is
predominantly the result of heterotrophic metabolism (Casals et al. 2011) and
therefore using CO2 production as a proxy for overall activity of the microbial
community might not be suitable. It should be noted that the soil samples dried
out significantly over the course of the experiment; thus, future research is needed to
clarify if the activation is dependent on time after rewetting or on soil moisture
content. Rapidly responding bacteria can be linked to very strong increases of trace
gases, which have been observed for N2O (e.g., Davidson 1992a) and CO2 (Placella
and Firestone 2013; Placella et al. 2012) after addition of water to dry soils.
Consequently, the trace gas emission from the soil into the atmosphere is not only
a result of abiotic processes and transport, but additionally mixed with microbial
processes modifying concentrations of the trace gas.

Under very low soil moisture, molecular gas diffusion in soils is accelerated
(Skopp et al. 1990). Under<2% gravimetric soil moisture, CO2 from the atmosphere
can easily diffuse into soil and thus is more easily accessible to microbes than
organic matter. Thus, it is likely that under such low soil moisture conditions,
autotrophic processes dominate over heterotrophic processes. In soils from humid
midlatitude ecosystems, maximum NO emissions occurred under moderate soil
moisture, and as the climate becomes drier, the maximum NO emissions shift toward
lower optimum soil moistures (Behrendt et al. 2014, 2017). This highlights the
importance of autotrophic nitrification for NO emissions in dryland soils. It is
noteworthy that an increase in gravimetric soil moisture of up to 2.2% was

Fig. 13.4 Effect of gravimetric soil moisture and soil temperature on net NO flux from a hyperarid,
unfertilized soil from Gobi Desert, Mongolia (results of laboratory experiments; see Behrendt et al.
2014). Blue and red color refers to 20 and 30 �C and dark and bright color refers to NO-free and
133 ppb NO fumigation, respectively
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frequently observed in the Negev Desert by non-rainfall water inputs (here: water
vapor adsorption) (Agam and Berliner 2004). This so-called hysteresis effect has not
yet been studied for NO, N2O, and HONO emissions. In comparison to fertilized
agricultural soils from humid midlatitude ecosystems, the NO emissions from
dryland soils are very low. However, if water vapor adsorption could maintain NO
emission at a low, but constant level, the large area covered by drylands (more than
40% of global land; UNEP 1997) may result in a significant contribution to the
overall global budget of NO (and eventually HONO) emissions.

The high NO emission under low soil moisture has also been investigated by
molecular methods. Transcriptional activity of different microbial groups is corre-
lated to soil moisture (Behrendt et al. 2017; Placella and Firestone 2013), which
suggests the hypothesis that under low soil moisture, a specialized microbial com-
munity drives the nitrogen cycle in drylands. Dryland soils are hot spots for NO
emissions (Homyak et al. 2016) and NO emission modeling suggests that dryland
soils are a stronger source than previously recognized (Steinkamp and Lawrence
2011). There is indication that ammonia-oxidizing archaea (AOA) play a major role
in the nitrogen cycle under extremely dry conditions (Sullivan et al. 2012). AOA are
known to produce NO (Martens-Habbena et al. 2015), tolerate high temperatures
(Adair and Schwartz 2008) and low NH4

+ (Stahl and de la Torre 2012), and have an
efficient aerobic carbon metabolism (Könneke et al. 2014). There is evidence that
AOB dehydrate and quickly recover from drying-out after rewetting of soil (Ermel
et al. 2018; Thion and Prosser 2014; Gleeson et al. 2013). AOA dehydrate and
recover slower, suggesting that they might stay active for a longer time than AOB
under dry conditions. One reason for this is likely their smaller cell size and therefore
their ability to colonize in fine soil pores, where water films are present even under
low soil moisture. This might be an advantage for their survival under harsh
conditions in dryland soils. However, other studies found evidence that under low
moisture, abiotic processes dominate gaseous N losses in drylands (e.g., McCalley
and Sparks 2009). Thus, the processes responsible for gaseous losses under low soil
moisture are still debated.

The main focus of laboratory incubations is to study the impact of microbe–
environment interactions on the soil–atmosphere exchange of trace gases to deduce a
net potential NO flux, which can be validated against field NO fluxes; e.g., from
dynamic chambers (Ludwig et al. 2001). Commonly, in these studies, soil moisture,
soil temperature, and the mixing ratio of the trace gas under investigation are
changed (Laville et al. 2009; Feig et al. 2008; Yang et al. 1996). The unique
advantage of laboratory studies versus field measurements is the investigation of
the effect of single parameters, such as soil moisture, on the soil–atmosphere
exchange of trace gases (Fig. 13.4).

The net NO release rate follows an optimum function over the course of the
drying-out of the soil sample and under low and elevated NO as well as at 20 and
30 �C. For this hyperarid soil, only NO production was observed (Fig. 13.4). For this
hyperarid soil, NO consumption rate coefficients, kNO, were estimated to be on the
order of < �0.120 � 10�5 m3 kg�1 s�1. This very low kNO range indicates that NO
consumption and potential conversion into N2O and N2 may be of minor importance
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in dryland soils. This agrees with one of the first few studies of NO and N2O from
semiarid regions, where it was found that NO fluxes dominate and N2O fluxes are of
minor importance (Scholes et al. 1997). Low organic carbon contents and thus
limited carbon substrate (availability of CO2 dominates over (dissolved) organic
matter under low soil moisture) and elevated temperatures may be the reasons why
soils from semiarid, arid, and hyperarid ecosystems are a less favorable environment
for denitrifiers. Low denitrifier diversity and activity was found for such soils
(Orlando et al. 2012; Behrendt et al. 2017). The increase of NO production with
soil temperature, here expressed as Q10-value, is on the order of 2. Indeed, previ-
ously developed algorithms (e.g., Feig et al. 2008) fit both the laboratory and the
field data very well in most cases. In this algorithm, the net NO flux, FNO
(in ng m�2 s�1), is described as a function of the relative soil moisture, S (or % of
“Water Filled Pore Space”), by

FNO Sð Þ ¼ a � Sb � exp �c � Sð Þ:

The parameters a, b, and c are related to observed values by

a ¼ FNO Sopt
� �

Sopt
b � exp �bð Þ

b ¼
ln

FNO Soptð Þ
FNO Suppð Þ

ln Sopt
Supp

� �
þ Supp

Sopt
� 1

c ¼ �b

Sopt

where Sopt is the soil moisture at which the maximum net NO flux is observed;
FNO(Sopt) equals max[FNO(S)]; and Supp is the soil moisture at which
FNO(WFPS) ¼ FNO(Supp) � 0 for S > Sopt. Numerical values of the parameters a,
b, and c can be determined by minimizing the sum product of the difference between
measured and fitted data points. Different temperature responses for NO release rate
under low and high soil moisture indicate that different microbial groups contribute
to the overall NO release rate from soil over the course of a dry-out.

3.2 Microbial Groups Versus Microbial Guilds: Effect
on Dryland Soil Processes

The activity of the overall microbial community in dryland soils drives the dynamics
of biogeochemical processes, e.g., nitrification and denitrification (expressed in
terms of the change in NO and N2O fluxes from soil to the atmosphere). However,
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in order to understand how the microbial community affects biogeochemical pro-
cesses, both microbial phylogeny and physiology need to be considered. The overall
activity of the microbial community of a soil can be thought of as the sum of
activities of various microbial groups. As a proxy for the activity of different
microbial groups, e.g., ammonia-oxidizing bacteria (AOB), ammonia-oxidizing
archaea (AOA), and denitrifiers, their gene expression can be studied and linked to
NO, N2O, and/or HONO emissions from dryland soils. Under elevated and very low
soil moisture, two maxima in NO release rate occur, which can be linked to the
activity of phylogenetic different microbial groups: AOA under very low soil
moisture and denitrifiers under elevated soil moisture, respectively (Behrendt et al.
2017). For a better understanding of the overall microbial community response to
changes in environmental parameters (e.g., pH, ammonia concentration, and tem-
perature), they are linked to different physiological responses within a microbial
group. This has been modeled by incorporating several microbial guilds into one
microbial group (Bouskill et al. 2012). In such a model, the different microbial
guilds are characterized based on differences in their traits, e.g., Vmax and KM values
(physiology), for different species (phylogeny). Vmax is the maximal velocity under
which an enzyme can catalyze a reaction and KM is the half-saturation constant. Both
are parameters for modeling enzyme kinetics (Michaelis and Menten 1913). A
similar concept of microbial guilds was discussed for carbon cycling (Schimel and
Schaeffer 2012; see Chap. 11), and for the temperature response of the microbial
community consisting of different microbial guilds (Schipper et al. 2014). The
concept of microbial groups and microbial guilds is of great importance to modeling
trace gas fluxes.

The primary evidence for two maxima in NO release rates during drying-out has
been reported for sodic soils from a semiarid ecosystem, but only one maximum in
NO release rate was used for modeling (Yu et al. 2008). This resulted in an
underestimation of NO fluxes from semiarid sodic soils. Finally, there is evidence
that the incorporation of phylogenetic microbial guilds via functional gene data into
models can improve their results (Graham et al. 2016) and the understanding of how
microbes affect ecosystem functioning in drylands. The knowledge about archaea is
still limited, but they are thought to have a great ecological relevance in drylands,
especially for NO emissions from soils. Thus, the biological nitrification model
(Bouskill et al. 2012) may be extended in the future by several archaeal guilds to
better understand the role of various AOAs in dryland nitrogen cycling. Finally, the
concept of microbial groups and microbial guilds does not only focus anymore on
the microbiological questions “who is there?” and “who is active?”, but also on the
question “how much detail of the overall microbial community structure and activity
is needed to create accurate models?”. The ultimate goal of this interdisciplinary
research is to create models that are sufficiently detailed to represent the dynamics in
biogeochemical processes conceptually rich enough to explore emergent behaviors.
Focus of new research should be on the link between molecular methods and
measurements of various trace gas fluxes. Since molecular analyses only provide a
“snapshot” for specific time points and are destructive samplings, the online mon-
itoring of trace gases is thought of as a powerful tool to get insight into the dynamics
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of the different microbial groups within the overall microbial community and into
physiology/enzyme kinetics and metabolism of different microbial guilds. One
prominent trace gas candidate may be methanol, which is produced during the
microbial oxidation of methane (see Sect. 2.1.5). This is of interest, since
methanotrophs are also capable of NO consumption (see Sect. 2.1.5). The NO
consumption by methanotrophs is a third process in addition to activity from AOA
and denitrifiers to model NO release rates from a dryland soil based on microbial
activity deduced from functional gene expression (Behrendt et al. 2017). There is
evidence that methane oxidation occurs in arid soils, but could not be detected in
hyperarid soils from the Negev Desert (Angel and Conrad 2009).

3.3 Nitrification Versus Denitrification: Observations from
Drylands

There is indication that in dryland soils, the activity of denitrifiers is limited (Orlando
et al. 2012; Behrendt et al. 2017). Exceptions are dark cyanolichen biocrusts, which
are characterized by high N fixation rates, but denitrification equals only about 3–4%
of N fixation rates (Barger et al. 2013). These dark cyanolichen biocrusts have also
been identified as important source for HONO (Weber et al. 2015). However, we
want to recapitulate that nitrifiers are also capable of denitrification (see Sect. 2.1.3)
and thus produce NO and N2O. Interestingly, there is evidence that this process is
dependent on NO2� accumulation (Giguere et al. 2017; Behrendt et al. 2017).
Despite NO2� levels that are commonly very low, there is evidence that these low
NO2� levels drive NO (Behrendt et al. 2017) and N2O production (Giguere et al.
2017) by both AOA and AOB. Interestingly, there is evidence of an abundance of
atypical archaeal ammonia-oxidizing communities in desert soils, demonstrating that
AOAs are of great relevance (Marusenko et al. 2015). All the aforementioned studies
raise the need for future studies focusing on changes in theNO2� pool in desert soils,
potential nitrifier denitrification by AOA and AOB, and finally the role of nitrite-
oxidizing bacteria (NOB). Interestingly, a modeling approach for nitrification
revealed a 12 �C higher optimum temperature for AOA than for AOB (Taylor
et al. 2016), supporting the role of AOA for NO and N2O emissions from dryland
soils under elevated temperatures. These findings may help to understand the
counterintuitive larger potential nitrification rates observed in seasonally dry eco-
systems (Sullivan et al. 2012). There is indication for a bacterial salt-tolerant
nitrifying community in soils from the Negev desert (Nejidat 2005). This highlights
the important role of salts in dryland soils, and the role of the deliquescence relative
humidity (DRH). For NaCl-organic mixed aerosols, the point of DRH was deter-
mined at about 75% (Cruz and Pandis 2000). For soils with high salt content, water
vapor adsorption increases beyond 2.2% in gravimetric soil moisture. For HONO, it
was found that alkaline soils emit the largest amounts (Oswald et al. 2013), but the
effect of salts on HONO formation from soils is still unknown. Microbial processes
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involved in ammonia oxidation for NO, N2O, and HONO emissions from dryland
soils are not yet understood. Eventually in dryland soils, conditions are less favor-
able for denitrifiers and in deserts they might be even below the limit of detection
(Orlando et al. 2012). Thus, nitrification should be the predominant process in desert
soils.

3.4 Global Importance of NO, N2O, and HONO Emissions
from Natural Dryland Soils

Most dryland soils are carbon-poor and lack substantial rainfall inputs, which results
in predominantly low soil moisture (Chap. 2). These conditions are unfavorable for
denitrification, and the contribution to N2O emissions from these soils is commonly
low. However, under these conditions, the processes of nitrification and nitrifier
denitrification might be important and contribute largely to HONO and NO forma-
tion. Instead of focusing on rainfall as the main driver of microbial activity and trace
gas release from dryland soils, future studies should focus on the role of water vapor
adsorption. There is also evidence from a multi-satellite sensor study that already
1 day before rainfall, soil moisture increased and NO emissions are within the order
of about 3.3 ng (N) m�2 s�1 from soils in the Sahel region (Zörner et al. 2016). In the
same study, the NO emissions from rainfall pulses were found to be ranged from 6 to
65 ng (N) m�2 s�1 (assuming a lifetime for NOx of 4 h). While the short NOx pulses
due to rainfall detected by remote sensing techniques are a validation of previous
field measurements (Johansson and Sanhueza 1988; Davidson 1992b; Levine et al.
1996; Scholes et al. 1997), NOx emissions based on water vapor adsorption in the
field have not yet been measured. Very low yearly average NO emissions of 2.18–
3.46 ng (N) m�2 s�1 for the Sahel region (Delon et al. 2014) suggest that NO
emissions due to water vapor adsorption might be the predominant process in
regions where rainfall events are rare. Changes in land-use, desertification as well
as the increase in dryland farming (including irrigation/soil moisture regime and C
and/or N fertilization practices) are thought to accelerate the N cycle in drylands in
the future. For example, a change in land-use from grassland to shrubland resulted in
decrease of NO emissions (Hartley and Schlesinger 2000), whereas a conversion of
grassland into cropland resulted in an eightfold increase in N2O emissions (Mosier
et al. 1996). While the contribution of natural dryland soils to global N2O emissions
is low (e.g., Scholes et al. 1997), the role of dryland soils for N2O consumption is not
yet understood. There is indication that not only denitrifiers but also other bacteria
and archaea might play an important role in N2O consumption, like the recently
detected clade II nitrous oxide reducers most of which do not denitrify (Jones et al.
2014; Sanford et al. 2012; Chapuis-Lardy et al. 2007). The effect of soil degradation
(water or wind erosion or chemical/physical deterioration), which frequently occurs
in dryland soils (Müller et al. 2014), on NO, N2O, and HONO emissions has not
been studied yet. However, there is indication that especially at sites where the salt
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content is increasing, a nitrifying community with unique capabilities can establish
(Nejidat 2005). An overview examining the variability of HONO emissions under
different land use is given by Oswald et al. (2013). There is evidence that the
development of bio crusts are capable of fixing sand dunes on a large scale of
16 km long and 0.7 km wide area where 1 � 1 m straw checkerboard sand barriers
were constructed (Li et al. 2002). However, a change from bare sand dunes into
anthropogenic created soil surfaces where biocrusts have been established has not
only the benefit of dune stabilization but also the price of additional trace gas release.
There is evidence that especially the late successional stage of dark cyanolichen
crusts produce large amounts of HONO and NO (Weber et al. 2015). Despite
maximal gaseous N-emissions from dryland soils are only low, recent HONO
emissions from drylands (Oswald et al. 2013) suggest that these soils are important
for N-cycling. Despite fluxes of N-oxides are several orders of magnitude higher
under simulated rainfall conditions (McCalley and Sparks 2008), rainfall in drylands
is limited. Of so far unknown importance in the water cycle in drylands are the
non-rainfall water inputs, which have been shown to trigger trace gas emissions
recently (McHugh et al. 2015). Non-rainfall water inputs are thought to occur in
drylands on a more regular basis than rainfall and therefore might be important for
N-cycling in these ecosystems.
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