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Abstract: Evapotranspiration (ET) is a crucial part of commercial grapevine production in California,
and the partitioning of this quantity allows the separate assessment of soil and vine water and energy
fluxes. This partitioning has an important role in agriculture since it is related to grapevine stress,
yield quality, irrigation efficiency, and growth. Satellite remote sensing-based methods provide an
opportunity for ET partitioning at a subfield scale. However, medium-resolution satellite imagery
from platforms such as Landsat is often insufficient for precision agricultural management at the
plant scale. Small, unmanned aerial systems (sUAS) such as the AggieAir platform from Utah
State University enable ET estimation and its partitioning over vineyards via the two-source energy
balance (TSEB) model. This study explores the assessment of ET and ET partitioning (i.e., soil water
evaporation and plant transpiration), considering three different resistance models using ground-
based information and aerial high-resolution imagery from the Grape Remote sensing Atmospheric
Profile and Evapotranspiration eXperiment (GRAPEX). We developed a new method for temperature
partitioning that incorporated a quantile technique separation (QTS) and high-resolution sUAS
information. This new method, coupled with the TSEB model (called TSEB-2TQ), improved sensible
heat flux (H) estimation, regarding the bias, with around 61% and 35% compared with the H from
the TSEB-PT and TSEB-2T, respectively. Comparisons among ET partitioning estimates from three
different methods (Modified Relaxed Eddy Accumulation—MREA; Flux Variance Similarity—FVS;
and Conditional Eddy Covariance—CEC) based on EC flux tower data show that the transpiration
estimates obtained from the FVS method are statistically different from the estimates from the MREA
and the CEC methods, but the transpiration from the MREA and CEC methods are statistically
the same. By using the transpiration from the CEC method to compare with the transpiration
modeled by different TSEB models, the TSEB-2TQ shows better agreement with the transpiration
obtained via the CEC method. Additionally, the transpiration estimation from TSEB-2TQ coupled
with different resistance models resulted in insignificant differences. This comparison is one of the
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first for evaluating ET partitioning estimation from sUAS imagery based on eddy covariance-based
partitioning methods.

Keywords: temperature separation; ET partitioning; transpiration; transpiration ratio; TSEB-PT;
TSEB-2T; energy closure; sUAS; California vineyards

1. Introduction

Climate change and water scarcity are elevating the importance of sustainable irri-
gation management, as agriculture accounts for approximately 70% of the worldwide
freshwater demands [1]. Precision irrigation management can improve crop growing
status and yield production [2] and prevent soil erosion, while also balancing the rela-
tionship between urban and agricultural water distribution. The accurate estimation of
evapotranspiration (ET) and its component fluxes transpiration (T) and soil evaporation
(E), along with detailed corresponding spatial information at the sub-field (plant) scale,
is of particular interest for supporting site-specific, precision irrigation management [3,4].
Quantification of the percentage of ET arising from T aids the understanding of changes in
carbon assimilation and water cycling in a changing environment [5]; however, obtaining
estimates of ET partitioning at spatiotemporal scales pertinent to management activities
remains challenging.

Remote sensing techniques provide a path for ET mapping and monitoring at the
field scale using satellite and airborne imagery [6–10]. Although satellites can generate
useful timeseries imagery for research and field-scale management over broad areas, the
relatively coarse spatial resolution of these images, especially the satellite thermal infrared
(TIR) resolution used in surface energy balance models, limits its application to field and
sub-field scales with their utility for precision applications [11,12]. Conversely, sUAS, a type
of platform equipped with high-resolution sensors, can potentially provide high-resolution
data to meet precision agricultural requirements [9]. UAVs are not only a cost-effective tool
for obtaining high-resolution data, but also a flexible platform that users can equip with
sensors and schedule flight times based on their requirements [13–15].

High-resolution aerial images and ground measurements collected by the Grape
Remote sensing Atmospheric Profiling and Evapotranspiration eXperiment (GRAPEX)
program [16] provide a unique opportunity for ET monitoring and mapping over California
vineyards at the plant scale. A two-source energy balance (TSEB) model [17,18] has been
used to connect those two types of data, upscaling the spatial scale from a single vine scale
to the vineyard scale. With the corresponding eddy-covariance flux tower monitoring ET
on the ground, these sites provide an excellent comparison for ET modeling [19–26] and
transpiration partitioning via TSEB models at the plant scale.

Two versions of the TSEB model have been designed to accommodate the resolution
of input surface temperature data. For coarser resolution imagery that does not allow for
the direct separation of soil and canopy temperatures, Norman et al., 1995 [17] developed a
method to retrieve soil and canopy temperatures by using a single observation of the bulk
directional radiometric temperature. This method iteratively adjusts a Priestley–Taylor
coefficient controlling the transpiration flux to find the realistic solution, and is referred to
here as the TSEB-PT model. A second method has been developed to use higher resolution
(sub-meter) land-surface temperature (LST) imagery supporting the separation of soil and
canopy temperatures, known as TSEB-2T [27].

Leaf area index (LAI) and LST are two key inputs used by both TSEB versions to
partition evaporative fluxes between the soil and the canopy—or, in vineyards, between
the grape vine and interrow soil or cover crop [28,29]. Although Gao et al., 2022 [30] used
machine learning techniques to generate a robust approach to estimate LAI at the plant
scale for vineyards across California, challenges related to modeling and evaluating TSEB
partitioning remain.
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One such challenge arises because separated canopy and soil temperatures signifi-
cantly affect available energy partitioning and the sensible heat fluxes from the soil and
canopy components and, thus, ultimately the soil evaporation and plant transpiration [31].
Errors in the soil and canopy temperatures can result in overestimation or underestimation
of soil evaporation and plant transpiration [9]. Previous research has used the relation-
ship between the normalized difference vegetation index (NDVI) and the corresponding
temperature value to obtain separated temperatures [21,26,32]. However, errors resulting
from shadows [33,34], image quality, etc., can affect the relationship between NDVI and
temperature, which in turn can affect TSEB modeling results.

Another challenge is determining the optimal TSEB model framework for ET partition-
ing. Several previous studies have shown that TSEB-2T can estimate ET more accurately
than TSEB-PT [27]. However, another study for a vineyard in Israel using ground-based
LST observations with ground-based measurements of soil E, and eddy covariance (EC)
based ET to derive T (T = ET − E), suggested TSEB-2T does poorly in partitioning ET
compared to TSEB-PT [3]. In that study, they found improvements were needed in soil
heat flux estimation, a better algorithm for radiation partitioning, and accounting for vine
canopy structure to improve the partitioning using TSEB-PT.

The final challenge is how to verify the TSEB estimated E and T. While high-frequency
EC flux monitoring data are useful for the model validation of total ET [35,36], E and
T are not directly measured by the EC flux tower. Fortunately, several techniques have
been developed to partition EC water and carbon dioxide fluxes into ground and plant
components [37], including Modified Relaxed Eddy Accumulation, MREA; Flux-Variance
Similarity, FVS; and Conditional Eddy-Covariance, CEC. This potentially provides a
method for comparison with remote sensing-based estimates aggregated over the EC
tower footprint [38], and Nassar et al., 2020 [22] and Gao et al., 2021 [39,40] discussed the
footprint calculation for the EC tower in California vineyards.

The objectives of this research are (1) to improve the method for temperature separation
based on high-resolution LST imagery; (2) to evaluate the performance of different TSEB
models coupled with different aerodynamic resistance models in comparison with energy
components measured by the EC flux tower; and (3) to quantify the performance of ET
partitioning via TSEB models. The modeling and measurement approaches are first described
in the Materials and Methods section, and then they are intercompared toward identifying an
optimal configuration in assessing ET and ET partitioning in vineyard systems.

2. Materials and Methods
2.1. Study Area

This study is part of the ongoing GRAPEX project started in 2013, which seeks to im-
prove water-use efficiency through the modeling of ET and plant stress in vineyards [41,42].
Vineyard blocks included in this study were located in three different climatic regions in Cal-
ifornia. Vineyard blocks equipped with EC flux towers BAR012 and BAR007 were furthest
north, in Sonoma County, approximately 6 km south of Cloverdale, CA; EC flux towers
SLM001 and SLM002 were located in Sacramento County, approximately 20 km northeast
of Lodi, CA; and block RIP 720 equipped with four different EC flux towers (RIP 720-1, RIP
720-2, RIP 720-3, and RIP 720-4) in the same vineyard block and EC flux tower RIP 760
were located in Madera County, about 30 km west of Fresno, CA. The four EC flux towers
in block RIP 720 were intended to monitor the flux from the corresponding sub-blocks with
different amounts of irrigation applied to cause variations in vine stress, as it was a variable
rate deficit irrigation (VRDI) study site. Figure 1 shows the geographical location of each
set of vineyard blocks. The position and name of the EC flux towers are labeled with a
red cross symbol and white font, respectively, in Figure 1, and the study-site geographic
information is presented in Table A1.
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Figure 1. Study areas in California and the position of EC flux towers at each research site. The
position of each EC flux tower within the respective research sites is marked by a red cross and the
corresponding tower name in white font.

2.2. Data
2.2.1. sUAS Platform Collection

Remote sensing data gathered via the AggieAir sUAS platform (https://uwrl.usu.
edu/aggieair/, accessed on 10 January 2020) between 2014 and 2019 were used in this study.
Details of the data are presented in Nassar et al., 2021 [23] and in Table A2. These data
include 4-band spectral images (B, G, R, and NIR) at 10 × 10 cm2 resolution, digital surface
model (DSM) data at 10 × 10 cm2 resolution, and thermal imagery (Tr) at 60 × 60 cm2

resolution [43]. Images of 6 bands collected via the AggieAir sUAS platform are included
as an example, and can be seen in Gao et al. 2022 [30].

2.2.2. Eddy-Covariance Flux Tower Data

High-frequency eddy covariance (EC) flux data were also collected in conjunction
with intensive observation periods (IOPs) at the tower sites identified in Figure 1. Tower
measurements of net radiation (Rn, Wm−2), latent heat flux (or evapotranspiration rate,
LE, Wm−2), sensible heat flux (H, Wm−2), and soil surface heat flux (G, Wm−2) are used
in this study to assess the TSEB-PT and TSEB-2T output. More information about the EC
flux tower can be found in Kustas et al., 2018 [16] and Bambach et al., 2022 [44], while
details about energy closure and ET partitioning for the EC tower data are provided in
Section 2.3.3.

2.3. Methodology

Figure 2 shows a flowchart of the process for comparing ET rate (LE converted to mass
units of mm d−1) and ET partitioning between the EC flux tower monitored data and the
TSEB modeling results within the corresponding footprint area. The top 5 boxes, along
with surface temperature in the second row, are the inputs for the TSEB models. Canopy
height, the ratio of canopy width and height, and fractional cover are obtained with a
python program [45]; LAI is obtained from the products of recent studies [30,46], using

https://uwrl.usu.edu/aggieair/
https://uwrl.usu.edu/aggieair/
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sUAS information and ground-based LAI measurements via machine learning approach.
In this study, the weather data are obtained from the flux tower instrumentation. The
TSEB-2T model requires partitioned temperature input (canopy and soil temperature), but
other inputs to the two model formulations are the same.
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Figure 2. Flowchart showing the process of comparing ET rate and ET partitioning from TSEB models
within the footprint area. The top 5 boxes, along with surface temperature in the second row, are the
inputs for the TSEB models. The ET rate and T/ET were extracted within the corresponding footprint
area and then compared with the EC flux tower monitored data.

A python-program tool developed by Gao et al., 2021 [35] was used to extract TSEB
modeling results on LE and ET partitioning within the footprint area around each tower for
comparison with EC flux tower measurements using the approach by Kljun et al., 2015 [38].

2.3.1. Temperature Separation

This study uses the normalized difference vegetation index (NDVI) as an indicator
to separate the total surface radiometric temperature, gridded at 3.6 m resolution, into
representative canopy and soil temperature grids at 3.6 m resolution. This method is based
on work from prior studies [21,22,26,27,30,34]. In this study, we also included a framework
to remove shadow effects in the temperature partitioning process (Figure 3). The removal
process is divided into 4 steps. (1) Shadow pixels are identified geometrically at the time of
satellite overpass based on DSM data at 0.15 m pixel level. (2) Shadow pixels are aggregated
from 0.15 m to 0.60 m pixel scale, with any 0.60 m pixel containing at least one 0.15 m
shadow pixel recognized as a shadow pixel. The reason for choosing 0.60 m is because
the coarse resolution for the thermal images is 0.6 m. (3) NDVI is generated based on
the 0.15 m optical image and then aggregated to the 0.60 m pixel level. (4) Within each
3.6 m pixel in the final modeling domain, the 0.6 m temperature, NDVI, and shadow data
are aligned. Any 0.6 m temperature and NDVI pixels that are collocated with a shadow
pixel are ignored in building the temperature-NDVI relationship used in the temperature
partitioning, as described below.
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Figure 3. Flowchart showing the ideal temperature separation process for a single TSEB model pixel
(3.6 m resolution).

In previous research, NDVI thresholds were created to identify the category of each
pixel in the model domain. For example, in the 1:1 plot shown in Figure 3, NDVI = 0.3 is
recognized as the threshold to identify whether or not the pixel (point) is senescent cover
crop stubble (interrow); the pixel is identified as an interrow pixel when the NDVI value
is lower than 0.30. Likewise, the pixel is identified as a vegetation pixel when the NDVI
value is higher than 0.65. The corresponding soil and vegetation temperature are normally
averaged based on the temperature values within the corresponding zone, with NDVI < 0.3
for soil zone and NDVI > 0.65 for vegetation zone, respectively.

In some cases, the plot of temperature vs. NDVI shows low correlation, with significant
scatter. Figure 4 is one such example, showing the temperature separation process for
one 3.6 m modeling pixel at SLM (9 August 2014, 10:41 am, the air temperature is around
27.7 ◦C). Figure 4a–c displays an 0.15 m resolution spectral image of the modeling pixel,
the corresponding 0.6 m resolution temperature image, and the 0.6 m resolution NDVI
image, respectively. The three pixels highlighted by black dashed boxes in Figure 4b,c
contain shadows, and the 0.15 m resolution shadows are represented by the red squares
in Figure 4c. The solid trend line in Figure 4d is generated based on all (36) points, and
the corresponding slope and intercept are shown on the figure. According to previous
research experience, the separated soil temperature is calculated based on the trend line
at the soil NDVI threshold (e.g., NDVI = 0.4), and the separated vegetation temperature
is averaged based on the pixel temperature within the pure vegetation zone. In this case,
the separated soil temperature is potentially underestimated, and the separated vegetation
temperature is overestimated due to the large spread in values in the pure vegetation zone.
The maximum spread vegetation temperatures is around 5 ◦C; however, relatively small
changes in the assumed canopy temperature will impact TSEB-2T [3], so it is important
to better constrain temperature samples considered in determining the endpoint pure soil
and vegetation temperatures.
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Figure 4. One example showing the performance of the method in one TSEB modeling pixel (3.6 m
resolution grid) to separate the temperature as canopy and soil temperature. (a) Spectral image at
0.15 m resolution, along with (b) co-collected temperature image and (c) generated NDVI image at
0.6 m resolution. Pixels highlighted with the dashed line in (b,c) represent the locations of shadow at
0.6 m pixel scale, and the 0.15 m red pixels in (b) represent shadow locations at 0.15 m pixel scale;
(d) linear relationship between temperature and NDVI considering 36 pairs of pixels within the 3.6 m
grid. The red points highlighted by dashed lines represent the temperatures from the shadow pixels.
The pure vegetation zone whose x-axis value is higher than 0.70 and the pure soil zone whose x-axis
value is lower than 0.40 are displayed at each side of the x-axis; (e) Within the pure vegetation zone,
pixels with temperatures higher than its 75th percentile temperature are highlighted by dash-lined
boxes; (f) pixel locations where the temperature is higher than its 75th percentile temperature are
highlighted on the temperature image; (g) box plots for soil region, NDVI ∈ [0, 0.40], vegetation
region, NDVI ∈ [0.70, 1], and the middle part region, NDVI ∈ (0.4, 0.7). The 50th and 75th percentile
temperatures within the pure vegetation zone are shown on the right side; (h) linear relationship
between temperature and NDVI obtained by eliminating vegetation-temperature pixels above the
75th percentile temperature, highlighted by the red dashed-line box.

The reason for the high variation of vegetation and soil temperature within a TSEB
modeling pixel is potentially coming from the data collection and data processing. The
imagery collection process is finished based on multiple spectral sensors, and the pixels
of each sensor do not perfectly align with each other. During the imagery processing, the
image–pixel alignment issue is still difficult to address. Therefore, it potentially results
in a high variation of temperature in a TSEB modeling pixel. However, this issue can be
addressed by upgrading the sensor in the future work, or flying the sensor at a lower
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elevation. Another reason for the high variation of vegetation temperature is because
of the vegetation type within the TSEB modeling pixel. The interrow pixel is a mixture
of bare soil and senescent cover crop stubble, and the senescent cover crop stubble is
short and not well irrigated. When upscaling NDVI from 0.15 m to 0.6 m pixels, most
interrow pixels are recognized as healthy vegetation pixels. Therefore, the temperature of
the interrow vegetation pixel is higher than the temperature of the vine vegetation, which
is well irrigated compared with the senescent cover crop stubble.

Quartile tests were performed to optimize the removal of contaminated pure vegeta-
tion pixel temperatures. For example, the averaged vegetation temperature, considering
all vegetation pixels, is around 32.4 ◦C. If the pixel with a corresponding temperature
higher than the 50th (75th) percentile of all vegetation–pixel temperatures is eliminated,
the corresponding vegetation temperature is around 31.3 ◦C (32.9 ◦C) (Figure 4e–g). Based
on extensive testing, the 75th percentile of the vegetation temperature was identified as the
threshold to eliminate the high-vegetation temperature effect on the vegetation temperature
estimation, based on further data analysis. This temperature-separation method is named
quantile temperature separation (QTS).

Another modification in this QTS method relates to the linear relationship between
the NDVI and temperature. Typically, pixel temperature decreases with increasing NDVI
within a TSEB modeling pixel (e.g., 3.6 m resolution pixel). After the elimination of high
vegetation temperatures in the pure vegetation zone, some high points in the middle region
(NDVI ∈ [0.40, 0.70]) still remain (Figure 4h). These anomalous pixels can affect the linear
relationship between the temperature and NDVI [27].

Therefore, a tool called RANSACRegressor (Scikit-learn developers) from the
“sklearn.linear_model” is used in this study. This tool is an iterative method for the
robust estimation of parameters from a subset of inliers from the complete dataset. The
three points highlighted by the red dash-line box (Figure 4h), for example, were eliminated
by the tool and then the linear relationship was obtained based on the remaining red points.

At the end, a soil temperature was estimated based on the linear relationship at
0.40 (NDVI value). If there was at least one soil pixel within the TSEB modeling pixel, the
soil temperature was calculated as an average value based on the temperature value on the
soil pixels. The canopy temperature was calculated as the average temperature of pixels
above 0.70 NDVI and within the lower 75th percentile of temperature in that vegetation
zone. If there were no vegetation pixels found in that TSEB modeling pixel, an “NAN”
value was used to represent the canopy temperature.

2.3.2. TSEB Model

The two-source energy balance (TSEB) model has been widely used for ET estimation
over agricultural lands (e.g., corn, soybeans, cotton, grapevines, almonds, pastures and
grazing lands) based on ground, aerial and satellite remote sensing data. A schematic
diagram from Kustas et al., 2018 [16] shows the TSEB model resistance network for the
sensible heat flux, and lists the set of equations used to obtain the iterative solution. The
soil and canopy temperatures constrain the sensible heat fluxes, net radiation, and soil heat
flux with the added initial estimate of canopy latent heat flux based on the Priestley–Taylor
(PT). This version of the TSEB model is called TSEB-PT [17]. For applications using higher
resolution (e.g., sUAS), thermal imagery of the soil and canopy temperatures are derived
using the methods described in Section 2.3.1. This version of the model is referred to as
TSEB-2T [27]. It is also noted that an earlier study by Kustas and Norman., 1997 [47], using
radiometric temperatures at significantly different viewing angles, could estimate soil and
canopy temperatures.

In the TSEB, net radiation, including soil and canopy net radiation, is estimated based
on a set of land surface parameters (e.g., longwave emissions from soil, canopy, and sky,
solar transmittance through the canopy; canopy and soil albedo). The ground heat flux, G, is
estimated as a fraction of the soil net radiation (RnS). Nieto et al., 2019 [27] show the empirical
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G/RnS curve fit as a function of time of the day. Considering that all sUAS images were
collected between 10 am to 4 pm, a constant G-ratio value (0.33) is used in this research.

Equation (1) shows the sensible heat flux calculation—the difference between TSEB-PT
and TSEB-2T lies in the approach to obtaining TC and TS. In addition to these component
temperatures, the aerodynamic resistance of the canopy (Rx) and soil (Rs) also affect the
H, but a systematic assessment of different methods for defining these resistances within
the TSEB context has not been conducted to date. Three different resistance models for
canopy and soil were tested in this study for both TSEB-PT and TSEB-2T: Norman and
Kustas (called NK resistance model in this paper, expressed by Equations (2) and (3)),
McNaughton and Van (MV model, by Equations (4) and (5)), and Choudhury and Monteith
(CM model, by Equations (6) and (7)), respectively. Because the separated temperature
images illustrated in Section 2.3.1 are used as input for the TSEB-2T model, the TSEB-2T
model coupled with QTS in this study is named as TSEB-2TQ.

H = HC + HS = ρairCp
TC − TAC

Rx
+ ρairCp

TS − TAC
Rs

(1)

Rs =
1

c 3
√

Ts − TA + bus
(2)

Rx =
C′

LAI

√
lw

Ud0+z0M

(3)

Rs =
10
u∗

(4)

Rx =
C′

F

√
lw × u∗ +

0.36
u∗

(5)

Rs =
hc × eαk

αk × kh

(
e−αk×

z0_soil
hc − e−αk

d0−z0M
hc

)
(6)

Rx =
1

F× 2 CMa
α′

√
uc
lw
×
(

1− e
−α′

2

) (7)

kh = k× u∗ × (hc − d0) (8)

In the above equations, Rs is the aerodynamic resistance of the soil; Rx is the aero-
dynamic resistance of the canopy; c and b are the coefficients depending on the turbulent
length scale in the canopy, soil-surface roughness, and turbulence intensity in the canopy;
TS is the soil-surface temperature (K); TA is the air temperature (K); us is the wind speed
near the soil surface (ms−1); u∗ is the friction velocity (ms−1); C′ is derived from weight-
ing a coefficient in the equation for leaf boundary layer resistance over the height of the
canopy [48] and it is assumed to be 90 s1/2 m−1; LAI is the leaf area index (m2 m−2); lw
is the average leaf width (m); Ud0+z0M is the wind speed at the heat source-sink (ms−1);
F is the local leaf area index; hc is the canopy height; αk is the heat diffusion coefficient;
k is the von Karman’s constant (0.41); z0_soil is the roughness length of the soil layer; d0
is the zero-plane displacement height (m); z0M is the aerodynamic roughness length for
momentum transport (m); CMa is the leaf drag coefficient [49]; α′ is the wind extinction
coefficient; and uc is the wind speed at the canopy interface (ms−1).

2.3.3. Validation Data from the Eddy Covariance Tower
Energy Components

Energy closure of the EC flux monitored data is a concern [19,24] for validating the
TSEB modeling results. Nieto et al., 2022 [24], for example, used the arithmetic-mean
value for the sensible heat flux and the latent heat flux based on three calculated possible
closure corrections to evaluate TSEB modeling results: (1) assigning all the residual error
to H; (2) assigning all the residual to LE; and (3) assigning the residual proportionally
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to H and LE by preserving the Bowen Ratio. In this research, the geometric-mean value
(Equation (9)) of the sensible heat flux and the geometric-mean value of the latent heat flux
are calculated to validate the corresponding TSEB modeling results [50], considering that
the geometric-mean value is less influenced by skewed distributions compared with the
arithmetic-mean value. (

n

∏
i=1

xi

) 1
n

= n
√

x1x2 · · · xn (9)

where n is the number of values, and xi are the values included in the average.

Transpiration

Zahn et al., 2022 [37] proposed the Conditional Eddy Covariance (CEC) method
using the high frequency water vapor and CO2 measurements from eddy covariance
measurements to estimate soil evaporation from plant transpiration, and compared results
with the modified Relaxed Eddy Accumulation (MREA) method and the Flux Variance
Similarity (FVS) method. They found that the CEC and MREA framework can be used
as a qualitative measure to identify stomatal and non-stomatal components. Methods to
evaluate the transpiration modeled by the TSEB models using these measurements are
explained in Section 3.2.1.

3. Results and Discussion
3.1. TSEB Modeling Results
3.1.1. TSEB Component Comparison Considering Different Resistance Models

Figure 5 shows the comparison of modeled versus measured energy components
(Rn, G, H, and LE), considering different TSEB models (TSEB-PT, TSEB-2T, and TSEB-2TQ)
coupled with different resistance models (NK, CM, and MV). In Figure 5, observed H and
LE have been adjusted for closure using the technique discussed in Section 2.3.3.
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Statistical metrics of evaluation for each flux, model, and resistance formulation are
provided in Table 1. Statistics show that the modeled Rn from different TSEB models, in
general, has a good agreement with the Rn from the EC flux tower. However, the modeled
G calculated via the ratio of the modeled soil net radiation has a lower agreement with
the G from the EC flux tower, which may result from the constant value (0.33) adopted
for the time period from 10 am to 4 pm. This suggests that a time-varying ratio needs to
be used for the G estimation, based on sUAS information for different times during the
day, as suggested by Nieto et al., 2019 [27]. Sensible heat estimates from TSEB models
coupled with the NK and/or the MV resistance models have better agreement with tower
measurements as quantified by the index of agreement, d (Table 1). Based on the RMSE
and d values, the H and LE estimated from the TSEB-2TQ shows better agreement with
measurement fluxes. This shows that the QTS method considering shadow and extreme
pixel-value effects, characteristics of the high-resolution pixel within the smallest TSEB
modeling domain, in general improved the flux estimation.

Table 1. Statistics of the goodness of fit showing the performance of each TSEB modeling result
within the footprint area. N is the number of cases used for validation, RMSE is the root mean square
error (Wm−2), Bias is the mean bias computed as the measured minus the modeled (Wm−2), r is the
Pearson correlation coefficient between the measured and modeled, and d is the Willmott’s index of
agreement [51]. When N is different in different groups, d is still calculated but not a representative
metric to compare the model performance.

TSEB-PT
(NK)

TSEB-PT
(CM)

TSEB-PT
(MV)

TSEB-2T
(NK)

TSEB-2T
(CM)

TSEB-2T
(MV)

TSEB-2TQ
(NK)

TSEB-2TQ
(CM)

TSEB-2TQ
(MV)

Net
radiation

N 60 60 60 60 60 60 60 60 60
RMSE 22 22 22 21 21 21 23 23 23
Bias −4 −5 −4 −5 −5 −5 −10 −10 −10

r 0.96 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
d 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Ground
heat flux

N 60 60 60 60 60 60 60 60 60
RMSE 41 40 41 41 41 41 39 39 39
Bias −27 −26 −27 −26 −26 −26 −24 −24 −24

r 0.25 0.24 0.25 0.26 0.26 0.26 0.27 0.27 0.27
d 0.52 0.52 0.52 0.54 0.54 0.54 0.55 0.55 0.55

Sensible
heat flux

N 60 60 60 60 60 60 60 60 60
RMSE 78 85 84 71 71 69 65 71 65
Bias 21 45 17 −16 14 −19 −3 26 −3

r 0.63 0.62 0.61 0.62 0.60 0.64 0.63 0.61 0.63
d 0.78 0.74 0.76 0.78 0.77 0.79 0.77 0.75 0.77

Latent heat
flux

N 60 60 60 60 60 60 60 60 60
RMSE 82 84 90 80 73 81 69 71 70
Bias −7 −32 −3 34 3 36 16 −13 16

r 0.53 0.55 0.51 0.55 0.57 0.58 0.58 0.59 0.58
d 0.73 0.73 0.71 0.71 0.76 0.72 0.75 0.78 0.75

Considering that previous research adopted the NK model and that the difference
between H and LE based on the NK and the MV model coupled with the TSEB-2TQ is
small, the TSEB-2TQ coupled with the NK model was adopted in this research for energy
component estimation.

3.1.2. Time-Based Performance of the TSEB-2TQ NK Model

The sUAS flight times were between 10 am and 4 pm local time (Table A2), which
is a fairly wide time frame. Considering the change in the solar altitude and azimuth for
the different overpass times, the sUAS overpasses were grouped into three different time
periods. The first time period, between 10:00 am and 11:59 am, was called the “Landsat”
(LS) time period since the Landsat passes over between 10:30 am and 11:00 am (Pacific
Standard Time—PST). The second time period, between 12:00 pm and 1:59 pm, is called the
“solar noon” (SN) time period since the sun reaches its highest point for the day at around
1:00 pm (PST). The third time period, after 2:00 pm (between 2:00 pm and 5:00 pm, PST), is
called the “afternoon” (AF) time period.
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Figure 6 shows the performance of TSEB-2TQ coupled with the NK model in estimating
energy components at each time period. Table A3 contains the corresponding metrics
associated with the comparisons displayed in Figure 6.
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Net radiation shows highest correlation with observations during the AF period, al-
though the relationship has higher bias and yields higher RMSE than the LS and SN periods.
This may result from using spatially and temporally constant values of emissivity (ε) and
the solar transmittance through the canopy (τs) in the TSEB. Torres-Rua et al., 2020 [26]
illustrated the challenge for spatial emissivity estimation, and they proved that spatial emis-
sivity (not a constant value) can improve TSEB model performance. Gao et al., 2021 [52]
pointed out that the solar spectrum reflectance and transmittance changes along with
the leaf water content. From these aspects, the spatial and temporal variability in these
parameters (e.g., ε and τs) need to be further studied if the Rn estimation is to be improved,
particularly in the afternoon period.

Metrics for the performance of G estimation suggest that the G ratio value (0.33) used
in the TSEB-2TQ model is more appropriate at the AF time period than for the LS and SN
time periods. For example, the labeled points in Figure 6a,b, “RIP760 20180806 10:41” and
“RIP760 20180805 12:33”, indicate that G was overestimated, indicating that the G ratio
should be smaller than 0.33. This behavior was also noted by Nieto et al., 2019 [27], who
found that a double asymmetric sigmoid function gave better results than using a constant
value, and better fits the observations than the sinusoidal function proposed by Santanello
and Friedl., 2003 [53].

RMSE in sensible and latent heat flux from the TSEB-2TQ is minimized in the AF
period. Examining scenes where outliers in H and LE are observed in Figure 6c showed
no significant issues from the QTS model based on the separated average soil and canopy
temperatures within the corresponding footprint area, in comparison with the remaining
image dates (Table A4), so the cause of poor performance is unknown.

3.2. Transpiration
3.2.1. Transpiration Estimation via CEC, MREA, and FVS

Based on the sUAS flight time, both CEC and MREA methods provided 50 transpi-
ration estimations, while the FVS method provided 19. The CEC and MREA methods
provided consistent estimates over the daytime period, while the FVS method often pro-
duced no solution. Figure 7 shows that the transpiration estimated via the FVS method has
a significant difference from the transpiration estimated via the CEC and MREA method.
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An analysis of variance (ANOVA) and a Tukey test (Table 2) was then processed to
not only show the transpiration difference between different groups, but also to show if
the null hypothesis (i.e., the mean transpiration between different groups is the same) was
acceptable [54]. Table 2 suggests that the mean transpiration estimated via the FVS method
yielded a significant difference from estimates from the CEC and MREA methods, and
the mean transpiration via CEC is statistically the same as the mean transpiration via the
MREA method. This is consistent with the findings of Zahn et al., 2022 [37]. Since the
CEC and MREA methods yielded essentially the same values, CEC values were used in
subsequent analyses.

Table 2. ANOVA and Tukey test results showing the difference between the transpiration estimated
based on different methods (CEC, MREA, and FVS). The null hypothesis is that the mean transpiration
between different groups is the same (shown in the last column). “Mean difference” is the mean
difference between “Group 1” and “Group 2.” “Lower boundary” and “Upper boundary” are the
lower and upper 95% confidence interval boundaries, respectively. The unit for “Mean difference,”
“Lower boundary,” and “Upper boundary” is Wm−2.

Group 1 Group 2 Mean
Difference p-Adj Lower

Boundary
Upper

Boundary

The Mean
Transpiration
Is the Same

CEC FVS −84 0.004 −152 −15 NO
CEC MREA 0 0.900 −69 68 YES

MREA FVS −84 0.004 −152 −15 NO

3.2.2. Transpiration Comparison

Figure 8 contains three scatter plots showing all comparisons between the transpiration
based on CEC method and the transpiration modeled by different TSEB models and the
sUAS information. Table A5 contains the results from the ANOVA and Tukey test, showing
the statistical differences of the mean values. The null hypothesis for the ANOVA test is
that the mean value from two different groups is statistically the same, and the last column
suggests that all mean values from “Group 1” and “Group 2” are statistically the same.
Importantly, two factors shown in Table A5 explain that transpiration estimated via the CEC
and MREA methods has a stronger relationship with transpiration modeled via TSEB-2TQ.
The first factor is the corresponding “p-adj” values, which are 0.900 (higher than most other
“p-adj” values, and higher than α = 0.05). The second is that the corresponding “Mean
difference” is smaller than 10 Wm−2, which is generally smaller than other experiments.
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Figure 8. The comparison between the transpiration based on the CEC method and the transpiration
modeled via the TSEB models (different TSEB models with different resistance models).

Table A6 is another supplement, showing the model performance displayed and
illustrated by Figure 8 and Table A5, respectively. The “Bias” (Table A6) explains the same
information as shown by “Mean difference” in Table A5 regarding the transpiration from
the CEC method. Except for r and d, since the value in each column performs at a similar
level, RMSE shows that the transpiration modeled via TSEB-2TQ, in general, is closer to the
transpiration estimated via the CEC method.

However, one must consider the fact that most of the vineyard sites used in this study
contain a cover crop used to remove excess moisture in the early spring for controlling
vine growth and the timing of initiating irrigation (Figure 9a). This complicates both the
modeling of vineyard ET and EC-based partitioning, since there is a period of time when T
sources come from both vine and cover crop.
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interrow as shown in Figure 9b will have T coming only from the grapevine. For the site 
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crop. For this situation, measurements below the vine canopy in the interrow are neces-
sary for estimating the ET contribution from the cover crop using, for example, micro-
Bowen ratio systems which were deployed in the SLM vineyard site for several IOPs [16]. 
High-resolution imagery separating interrow from the vine canopy, especially for the sit-
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Figure 9. Two examples, (a,b), show the different interrow under the vine canopy.

An EC flux tower measuring water and carbon fluxes for the site with a bare soil
interrow as shown in Figure 9b will have T coming only from the grapevine. For the site
shown in Figure 9a, the EC flux tower cannot separate T from the grapevine and cover
crop. For this situation, measurements below the vine canopy in the interrow are necessary
for estimating the ET contribution from the cover crop using, for example, micro-Bowen
ratio systems which were deployed in the SLM vineyard site for several IOPs [16]. High-
resolution imagery separating interrow from the vine canopy, especially for the situation
shown in Figure 9a, is necessary because ET from the interrow needs to be considered.
Data that have been collected in the GRAPEX program will eventually shed light on this.
From a modeling perspective, for example, this is being addressed using a three-source
model (3SEB), which is a modification of TSEB and has been initially tested in the RIP720
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vineyard using tower-based land surface temperature and found to provide a more reliable
ET partitioning account for the interrow cover crop [55].

4. Conclusions

In this study, we assessed the performance of the TSEB model in energy component
estimation and evapotranspiration partitioning. Three different versions of TSEB coupled
with three different resistance models were used to model the energy components (Rn,
G, H, and LE). Modeled estimates were compared with monitored data from the EC flux
tower within the corresponding footprint area. Results show that the QTS method adopted
in this research can improve the estimation of H, and TSEB-2TQ (TSEB-2T model coupled
with the QTS method for temperature separation) coupled with the NK (Norman and
Kustas) resistance model can appropriately provide energy-component estimations. The
ET partitioning comparison regarding transpiration illustrated that all TSEB models are
statistically acceptable for ET partitioning, but the TSEB-2TQ showed better agreement with
the CEC method. Further work, focused on augmenting the EC flux tower system with
measurements of ET for the interrow, upgrading the sUAS image processing system for
creating near-real time products, and implementing a 3SEB formulation to explicitly account
for the interrow cover crop, is necessary to accurately estimate vine transpiration [55]. These
advancements will improve management practices that promote great water use efficiency
in vineyards and will improve growers’ and researchers’ understanding of the role of cover
crop and vine water use at the canopy and sub-block scale.
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Appendix A

Table A1. Study-site geographic information.

Study Sites Latitude Longitude Elevation above the Sea Level (m)

SLM 38◦16′49.76′′ −121◦7′3.35′′ 40
BAR 38◦45′4.91′′ −122◦58′28.77′′ 120

RIP760 36◦50′20.52′′ −120◦12′36.60′′ 62
RIP720 36◦50′57.27′′ −120◦10′26.50′′ 62

Table A2. The flight date and time of the sUAS platform over vineyards. Azimuth and elevation of
the sun corresponding to the time are also shown.

Sites Year Month Day Time Flight Azimuth Elevation

RIP 720-1
RIP 720-2
RIP 720-3
RIP 720-4

2018 6 19 11:20 144.1 74.0
2018 6 19 13:17 236.1 68.8
2018 6 19 15:38 269.8 41.8
2018 7 12 12:29 201.0 74.2
2018 7 12 15:32 266.5 43.1
2018 7 13 10:40 123.3 66.3
2018 7 13 15:22 264.6 45.1
2018 8 5 10:44 132.4 63.3
2018 8 5 12:33 198.9 69.2
2018 8 6 10:41 131.2 62.8
2019 5 4 10:25 130.1 60.9

RIP 760

2018 6 19 11:20 144.1 74.0
2018 6 19 13:17 236.1 68.8
2018 6 19 15:38 269.8 41.8
2018 7 12 12:29 201.0 74.2
2018 7 12 15:32 266.5 43.1
2018 7 13 10:40 123.3 66.3
2018 8 5 10:44 132.4 63.3
2018 8 5 12:33 198.9 69.2
2018 8 6 10:41 131.2 62.8

BAR012

2017 8 8 10:52 144.9 63.6
2017 8 9 10:43 141.1 62.3
2019 6 27 10:41 131.9 68.9
2019 6 27 12:07 193.6 74.2
2019 6 27 14:21 255.2 54.7
2019 7 29 10:51 140.8 65.8
2019 7 29 13:09 224.2 64.4
2019 7 30 10:28 130.9 62.5
2019 7 30 13:09 223.9 64.2
2019 7 30 15:40 264.2 37.5

SLM001

2014 8 9 10:41 136.3 61.5
2015 6 2 10:43 131.9 67.9
2015 6 2 14:07 250.2 57.2
2015 7 11 10:35 125.1 65.5
2015 7 11 14:14 250.1 57.3
2019 5 3 10:38 139.1 62.0

SLM002

2014 8 9 10:41 136.3 61.5
2015 6 2 10:43 131.9 67.9
2015 6 2 14:07 250.2 57.2
2015 7 11 10:35 125.1 65.5
2015 7 11 14:14 250.1 57.3
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Table A3. The performance of the TSEB-2T model coupled with the Norman and Kustas (NK)
resistance model at different research sites with different times shown by different evaluation metrics.
“LS” stands for the results that occurred in Landsat time; “SN” near solar noon; and “AF” afternoon.
The unit of RMSE and Bias is Wm−2.

Time
Periods

Net Radiation Ground Heat Flux Sensible Heat Flux Latent Heat Flux

N RMSE Bias r N RMSE Bias r N RMSE Bias r N RMSE Bias r

LS 29 21 −9 0.91 29 45 −28 −0.43 29 66 2 0.33 29 68 16 0.62
SN 17 21 −3 0.79 17 40 −28 −0.38 17 69 −23 0.63 17 81 49 0.64
AF 14 29 −23 0.96 14 20 −12 0.64 14 58 8 0.63 14 56 −22 0.46

Table A4. Separated average soil and canopy temperatures within the corresponding footprint area
via the QTS model (the temperature unit is ◦C).

Site Date Time Sonic Air
Temperature

Soil
Temperature

Canopy
Temperature

Soil–Canopy
Temperature
Difference

SLM001 20150711 14:14 28.1 32.9 28.7 4.2
SLM002 20150711 14:14 30.7 32.9 28.7 4.2
BAR012 20190627 14:21 25.7 31.0 26.6 4.4
BAR012 20190730 15:40 30.9 34.2 29.4 4.8
RIP760 20180619 15:38 32.1 36.2 31.6 4.6

RIP720-1 20180619 15:38 34.0 35.5 32.1 3.4
RIP720-1 20180712 15:32 38.3 36.8 33.1 3.7
RIP720-1 20180713 15:22 38.1 36.7 33.3 3.4
RIP720-2 20180619 15:38 34.5 37.3 32.5 4.8
RIP720-2 20180712 15:32 38.8 37.8 33.0 4.8
RIP720-2 20180713 15:22 38.5 38.6 34.4 4.2
RIP720-3 20180713 15:22 38.5 35.1 31.1 4.0
RIP720-4 20180619 15:38 35.9 35.6 31.8 3.8
RIP720-4 20180713 15:22 40.5 37.1 32.9 4.2

Table A5. ANOVA and Tukey test results showing the difference between the transpiration calculated
via the CEC method and the transpiration modeled via the TSEB models. The null hypothesis is
that the mean transpiration between different groups is the same. “Mean difference” is the mean
difference between “Group 1” and “Group 2.” “Lower boundary” and “Upper boundary” are the
lower and upper 95% confidence interval boundaries, respectively. “CEC” represents the transpiration
calculated via the CEC method. The unit for “Mean difference,” “Lower boundary,” and “Upper
boundary” is Wm−2.

Group 1 Group 2 Mean
Difference p-Adj Lower

Boundary
Upper

Boundary

The Mean
Transpiration
Is the Same

CEC TSEB-PT (NK) −25 0.674 −69 18 YES
CEC TSEB-PT (CM) −16 0.900 −60 27 YES
CEC TSEB-PT (MV) −32 0.372 −75 12 YES
CEC TSEB-2T (NK) −36 0.194 −80 7 YES
CEC TSEB-2T (CM) −30 0.456 −74 13 YES
CEC TSEB-2T (MV) −39 0.132 −82 5 YES
CEC TSEB-2TQ (NK) −10 0.900 −53 34 YES
CEC TSEB-2TQ (CM) −7 0.900 −51 36 YES
CEC TSEB-2TQ (MV) −9 0.900 −53 34 YES
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Table A6. Metrics for model evaluation shown in Figure 8. N is the number of scatters in Figure 8;
RMSE is the root mean square error; Bias is the mean bias computed as the observed minus the
predicted; r is the Pearson correlation coefficient between the observed and the predicted; and d is
Willmott’s index of agreement.

TSEB-PT TSEB-2T TSEB-2TQ

NK CM MV NK CM MV NK CM MV

N 50 50 50 50 50 50 50 50 50
RMSE 71 68 77 84 77 83 72 70 71
Bias 25 16 32 36 30 39 10 7 9

r 0.58 0.58 0.56 0.54 0.55 0.56 0.54 0.54 0.54
d 0.73 0.73 0.72 0.71 0.72 0.72 0.73 0.72 0.73
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9. Bellvert, J.; Jofre-Ĉekalović, C.; Pelechá, A.; Mata, M.; Nieto, H. Feasibility of Using the Two-Source Energy Balance Model (TSEB)
with Sentinel-2 and Sentinel-3 Images to Analyze the Spatio-Temporal Variability of Vine Water Status in a Vineyard. Remote Sens.
2020, 12, 2299. [CrossRef]

10. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens.
2012, 4, 3287–3319. [CrossRef]

11. Xue, J.; Anderson, M.C.; Gao, F.; Hain, C.; Sun, L.; Yang, Y.; Knipper, K.R.; Kustas, W.P.; Torres-Rua, A.F.; Schull, M. Sharpening
ECOSTRESS and VIIRS Land Surface Temperature Using Harmonized Landsat-Sentinel Surface Reflectances. Remote Sens.
Environ. 2020, 251, 112055. [CrossRef] [PubMed]

12. Yang, Y.; Anderson, M.C.; Gao, F.; Xue, J.; Knipper, K.; Hain, C. Improved Daily Evapotranspiration Estimation Using Remotely
Sensed Data in a Data Fusion System. Remote Sens. 2022, 14, 1772. [CrossRef]

13. De Castro, A.I.; Shi, Y.; Maja, J.M.; Peña, J.M. Uavs for Vegetation Monitoring: Overview and Recent Scientific Contributions.
Remote Sens. 2021, 13, 2139. [CrossRef]

14. Tunca, E.; Köksal, E.S.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.S. Estimation of Bell Pepper Evapotranspiration Using Two-Source
Energy Balance Model Based on High-Resolution Thermal and Visible Imagery from Unmanned Aerial Vehicles. Appl. Remote
Sens. 2022, 16, 022204. [CrossRef]

15. Long, D.S.; Engel, R.E.; Siemens, M.C. Measuring Grain Protein Concentration with In-Line Near Infrared Reflectance Spec-
troscopy. Agron. J. 2008, 100, 247–252. [CrossRef]

16. Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Knipper, K.; Torres-Rua, A.F.; Parry, C.K.; Nieto, H.; Agam, N.; White, W.A.;
Gao, F.; et al. The Grape Remote Sensing Atmospheric Profile and Evapotranspiration Experiment. Bull. Am. Meteorol. Soc. 2018,
99, 1791–1812. [CrossRef]

17. Norman, J.M.; Kustas, W.P.; Humes, K.S. Source Approach for Estimating Soil and Vegetation Energy Fluxes in Observations of
Directional Radiometric Surface Temperature. Agric. For. Meteorol. 1995, 77, 263–293. [CrossRef]

18. Kustas, W.P.; Norman, J.M. Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces. Hydrol. Sci. J. 1996, 41,
495–516. [CrossRef]

http://doi.org/10.1007/s11119-020-09711-9
http://doi.org/10.3390/rs13204155
http://doi.org/10.1016/j.agrformet.2021.108328
http://doi.org/10.1029/2021WR030046
http://doi.org/10.1016/j.agrformet.2018.01.019
http://doi.org/10.3390/rs13173420
http://doi.org/10.1007/s00271-022-00810-1
http://doi.org/10.3390/rs14020372
http://doi.org/10.3390/rs12142299
http://doi.org/10.3390/rs4113287
http://doi.org/10.1016/j.rse.2020.112055
http://www.ncbi.nlm.nih.gov/pubmed/33814638
http://doi.org/10.3390/rs14081772
http://doi.org/10.3390/rs13112139
http://doi.org/10.1117/1.JRS.16.022204
http://doi.org/10.2134/agronj2007.0052
http://doi.org/10.1175/BAMS-D-16-0244.1
http://doi.org/10.1016/0168-1923(95)02265-Y
http://doi.org/10.1080/02626669609491522


Remote Sens. 2023, 15, 756 19 of 20

19. Kustas, W.P.; Nieto, H.; Garcia-Tejera, O.; Bambach, N.; McElrone, A.J.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.;
Torres-Rua, A.F.; et al. Impact of Advection on Two-Source Energy Balance (TSEB) Canopy Transpiration Parameterization
for Vineyards in the California Central Valley. Irrig. Sci. 2022, 40, 575–591. [CrossRef]

20. Alfieri, J.G.; Kustas, W.P.; Nieto, H.; Prueger, J.H.; Hipps, L.E.; McKee, L.G.; Gao, F.; Los, S. Influence of Wind Direction on the
Surface Roughness of Vineyards. Irrig. Sci. 2019, 37, 359–373. [CrossRef]

21. Nassar, A.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; McKee, M.; Hipps, L.E.; Stevens, D.; Alfieri, J.G.; Prueger, J.H.;
Alsina, M.M.; et al. Influence of Model Grid Size on the Estimation of Surface Fluxes Using the Two Source Energy Balance
Model and SUAS Imagery in Vineyards. Remote Sens. 2020, 12, 342. [CrossRef] [PubMed]

22. Nassar, A.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; McKee, M.; Hipps, L.E.; Alfieri, J.G.; Prueger, J.H.; Alsina, M.M.;
McKee, L.G.; et al. To What Extend Does the Eddy Covariance Footprint Cutoff Influence the Estimation of Surface Energy
Fluxes Using Two Source Energy Balance Model and High-Resolution Imagery in Commercial Vineyards? In Autonomous
Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping V; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE:
Bellingham, WA, USA, 2020; Volume 11414, p. 16.

23. Nassar, A.; Torres-rua, A.F.; Kustas, W.P.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; Nieto, H.; Alsina, M.M.; White, W.A.;
McKee, L.; et al. Assessing Daily Evapotranspiration Methodologies from One-time-of-day Suas and Ec Information in the
Grapex Project. Remote Sens. 2021, 13, 2887. [CrossRef] [PubMed]

24. Nieto, H.; Alsina, M.M.; Kustas, W.P.; García-Tejera, O.; Chen, F.; Bambach, N.; Gao, F.; Alfieri, J.G.; Hipps, L.E.; Prueger, J.H.; et al.
Evaluating Different Metrics from the Thermal-Based Two-Source Energy Balance Model for Monitoring Grapevine Water Stress.
Irrig. Sci. 2022, 40, 697–713. [CrossRef]

25. Nieto, H.; Bellvert, J.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Prueger, J.H.; Torres-Rua, A.F.; Hipps, L.E.; Elarab, M.; Song, L. Unmanned
Airborne Thermal and Mutilspectral Imagery for Estimating Evapotranspiration in Irrigated Vineyards. In Proceedings of the
International Geoscience and Remote Sensing Symposium (IGARSS), Forth Worth, TX, USA, 23–27 July 2017; pp. 5510–5513.

26. Torres-Rua, A.F.; Ticlavilca, A.M.; Aboutalebi, M.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; Alfieri, J.G.; Hipps, L.E.;
McKee, L.G.; et al. Estimation of Evapotranspiration and Energy Fluxes Using a Deep-Learning-Based High-Resolution Emissivity
Model and the Two-Source Energy Balance Model with SUAS Information. In Autonomous Air and Ground Sensing Systems for
Agricultural Optimization and Phenotyping V; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2020; Volume
11414, p. 10.

27. Nieto, H.; Kustas, W.P.; Torres-Rúa, A.F.; Alfieri, J.G.; Gao, F.; Anderson, M.C.; White, W.A.; Song, L.; Alsina, M.M.;
Prueger, J.H.; et al. Evaluation of TSEB Turbulent Fluxes Using Different Methods for the Retrieval of Soil and Canopy
Component Temperatures from UAV Thermal and Multispectral Imagery. Irrig. Sci. 2019, 37, 389–406. [CrossRef] [PubMed]

28. Kang, Y.; Gao, F.; Anderson, M.C.; Kustas, W.P.; Nieto, H.; Knipper, K.; Yang, Y.; White, W.A.; Alfieri, J.G.; Torres-Rua, A.F.; et al. Evaluation
of Satellite Leaf Area Index in California Vineyards for Improving Water Use Estimation. Irrig. Sci. 2022, 40, 531–551. [CrossRef]

29. Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.;
Alfieri, J.G.; et al. Downscaling UAV Land Surface Temperature Using a Coupled Wavelet-Machine Learning-Optimization
Algorithm and Its Impact on Evapotranspiration. Irrig. Sci. 2022, 40, 553–574. [CrossRef]

30. Gao, R.; Torres-Rua, A.F.; Aboutalebi, M.; White, W.A.; Anderson, M.C.; Kustas, W.P.; Agam, N.; Alsina, M.M.; Alfieri, J.G.;
Hipps, L.E.; et al. LAI Estimation across California Vineyards Using SUAS Multi-Seasonal Multi-Spectral, Thermal, and Elevation
Information and Machine Learning. Irrig. Sci. 2022, 1, 1–29. [CrossRef]

31. Knipper, K.; Anderson, M.C.; Bambach, N.; Kustas, W.P.; Gao, F.; Zahn, E.; Hain, C.; Mcelrone, A.; Belfiore, O.R.; Castro, S.; et al.
Evaluation of Partitioned Evaporation and Transpiration Estimates within the DisALEXI Modeling Framework over Irrigated
Crops in California. Remote Sens. 2023, 15, 68. [CrossRef]

32. Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Nieto, H.; Kustas, W.P.; Coopmans, C. The Impact of Shadows on Partitioning of
Radiometric Temperature to Canopy and Soil Temperature Based on the Contextual Two-Source Energy Balance Model (TSEB-2T).
In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV; Thomasson, J.A., McKee, M.,
Moorhead, R.J., Eds.; SPIE: Bellingham, WA, USA, 2019; Volume 11008, p. 3.

33. Aboutalebi, M.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; Coopmans, C.; McKee, M. Assessment of Different Methods for Shadow
Detection in High-Resolution Optical Imagery and Evaluation of Shadow Impact on Calculation of NDVI, and Evapotranspiration.
Irrig. Sci. 2019, 37, 407–429. [CrossRef]

34. Aboutalebi, M.; Torres-Rua, A.F.; McKee, M.; Kustas, W.P.; Nieto, H.; Alsina, M.M.; White, A.; Prueger, J.H.; McKee, L.;
Alfieri, J.G.; et al. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspira-
tion Models. Remote Sens. 2019, 12, 50. [CrossRef]

35. Gao, R.; Torres-Rua, A.F.; Nassar, A.; Hipps, L.; Nieto, H.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.;
Alsina, M.M.; et al. TSEB Modeling and the Comparison between the Model Results and the Eddy-Covariance Monitored Data
within the Footprint Area. CUAHSI HydroShare 2021. [CrossRef]

36. Gao, R.; Torres-Rua, A.F.; Nassar, A.; Alfieri, J.G.; Aboutalebi, M.; Hipps, L.E.; Ortiz, N.B.; Mcelrone, A.J.; Coopmans, C.;
Kustas, W.P.; et al. Evapotranspiration Partitioning Assessment Using a Machine-Learning-Based Leaf Area Index and the Two-Source
Energy Balance Model with SUAV Information; Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2021;
Volume 11747, p. 21.

http://doi.org/10.1007/s00271-022-00778-y
http://doi.org/10.1007/s00271-018-0610-z
http://doi.org/10.3390/rs12030342
http://www.ncbi.nlm.nih.gov/pubmed/32355571
http://doi.org/10.3390/rs13152887
http://www.ncbi.nlm.nih.gov/pubmed/35003785
http://doi.org/10.1007/s00271-022-00790-2
http://doi.org/10.1007/s00271-018-0585-9
http://www.ncbi.nlm.nih.gov/pubmed/32355404
http://doi.org/10.1007/s00271-022-00798-8
http://doi.org/10.1007/s00271-022-00801-2
http://doi.org/10.1007/s00271-022-00776-0
http://doi.org/10.3390/rs15010068
http://doi.org/10.1007/s00271-018-0613-9
http://doi.org/10.3390/rs12010050
http://doi.org/10.4211/hs.eb6eeeccdbe546fc941f3c219cb05a34


Remote Sens. 2023, 15, 756 20 of 20

37. Zahn, E.; Bou-Zeid, E.; Good, S.P.; Katul, G.G.; Thomas, C.K.; Ghannam, K.; Smith, J.A.; Chamecki, M.; Dias, N.L.;
Fuentes, J.D.; et al. Direct Partitioning of Eddy-Covariance Water and Carbon Dioxide Fluxes into Ground and Plant Components.
Agric. For. Meteorol. 2022, 315. [CrossRef]

38. Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A Simple Two-Dimensional Parameterisation for Flux Footprint Prediction
(FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [CrossRef]

39. Gao, R.; Nassar, A.; Torres-Rua, A.F.; Hipps, L.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.; Alsina, M.M.;
Alfieri, J.; et al. Footprint Area Generating Based on Eddy Covariance Records. CUAHSI HydroShare 2021. [CrossRef]

40. Gao, R.; Torres-Rua, A.F. Features Extraction from the LAI2200C Plant Canopy Analyzer. CUAHSI HydroShare 2021. [CrossRef]
41. Kustas, W.P.; Agam, N.; Alfieri, J.G.; McKee, L.G.; Prueger, J.H.; Hipps, L.E.; Howard, A.M.; Heitman, J.L. Below Canopy

Radiation Divergence in a Vineyard: Implications on Interrow Surface Energy Balance. Irrig. Sci. 2019, 37, 227–237. [CrossRef]
42. Gao, R.; Alsina, M.M.; Torres-Rua, A.F.; Hipps, L.E.; Kustas, W.P.; White, W.A.; Anderson, M.C.; Alfieri, J.G.; Dokoozlian, N.;

Nieto, H.; et al. Exploratory Analysis of Vineyard Leaf Water Potential against UAS Multispectral and Temperature Information;
Thomasson, J.A., Torres-Rua, A.F., Eds.; SPIE: Bellingham, WA, USA, 2022; Volume 12114, pp. 160–185.

43. Torres-Rua, A.F. Vicarious Calibration of SUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface
Temperature. Sensors 2017, 17, 1499. [CrossRef]

44. Bambach, N.; Kustas, W.P.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; McKee, L.; Castro, S.J.; Volk, J.; Alsina, M.M.; McElrone, A.J.
Evapotranspiration Uncertainty at Micrometeorological Scales: The Impact of the Eddy Covariance Energy Imbalance and
Correction Methods. Irrig. Sci. 2022, 40, 445–461. [CrossRef]

45. Gao, R.; Torres-Rua, A.F. A Python-Based Program Generating a Part of Information Based on AggieAir Images for the TSEB
Model: Taking California Vineyards as an Example. CUAHSI HydroShare 2022. [CrossRef]

46. Gao, R.; Torres-Rua, A.F.; Aboutalebi, M.; White, W.A.; Anderson, M.; Kustas, W.P.; Agam, N.; Alsina, M.M.; Alfieri, J.;
Hipps, L.; et al. Feature Extraction Approaches for Leaf Area Index Estimation in California Vineyards via Machine Learning
Algorithms. CUAHSI HydroShare 2021. [CrossRef]

47. Kustas, W.P.; Norman, J.M. A Two-Source Approach for Estimating Turbulent Fluxes Using Multiple Angle Thermal Infrared
Observations. Water Resour. Res. 1997, 33, 1495–1508. [CrossRef]

48. McNaughton, K.G.; Hurk, B.J.J.M.V.D. A “Lagrangian” Revision of the Resistors in the Two-Layer Model for Calculating the
Energy Budget of a Plant Canopy. Boundary-Layer Meteorol. 1995, 74, 261–288. [CrossRef]

49. Choudhury, B.J.; Monteith, J.L. A Four-layer Model for the Heat Budget of Homogeneous Land Surfaces. Q. J. R. Meteorol. Soc.
1988, 114, 373–398. [CrossRef]

50. Gao, R.; Torres-Rua, A.F.; Hipps, L.E.; Kustas, W.P.; Anderson, M.C.; White, W.A.; Alfieri, J.G.; Alsina, M.M.; Dokoozlian, N.;
Nieto, H.; et al. Assessment of TSEB-PT and -2T in ET Partitioning Estimation over California Commercial Vineyards Based on SUAS
Information; SPIE: Bellingham, WA, USA, 2022; Volume 12114, p. 121140I.

51. Willmott, C.J. Some Comments on the Evaluation of Model Performance. Bull.- Am. Meteorol. Soc. 1982, 63, 1309–1313. [CrossRef]
52. Gao, Y.; Tang, B.; Lu, B.; Ji, G.; Ye, H. Investigation on the Effects of Water Loss on the Solar Spectrum Reflectance and Transmittance

of Osmanthus Fragrans Leaves Based on Optical Experiment and PROSPECT Model. RSC Adv. 2021, 11, 37268–37275. [CrossRef]
53. Santanello, J.A.; Friedl, M.A. Diurnal Covariation in Soil Heat Flux and Net Radiation. J. Appl. Meteorol. 2003, 42, 851–862. [CrossRef]
54. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers; John Wiley&Sons: Hoboken, NJ, USA, 2010.
55. Burchard-Levine, V.; Nieto, H.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; Prueger, J.H.; Hipps, L.E.; Bambach-Ortiz, N.; McElrone, A.J.;

Castro, S.J.; et al. Application of a Remote-Sensing Three-Source Energy Balance Model to Improve Evapotranspiration Partition-
ing in Vineyards. Irrig. Sci. 2022, 40, 593–608. [CrossRef]

56. Temperature Separation via Eliminating Shadow-Pixel Influence Based on High-Resolution SUAS Image in California Vineyards.
CUAHSI HydroShare 4. 2023. Available online: https://doi.org/10.4211/hs.c0876501581f46c698727dc956cc2d73 (accessed on
18 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.agrformet.2021.108790
http://doi.org/10.5194/gmd-8-3695-2015
http://doi.org/10.4211/hs.9118e2c1034e40e4ba4721cd17702f70
http://doi.org/10.4211/hs.6d0c4a14289742d0951ba5ab9eca7dc0
http://doi.org/10.1007/s00271-018-0601-0
http://doi.org/10.3390/s17071499
http://doi.org/10.1007/s00271-022-00783-1
http://doi.org/10.4211/hs.c12d334b3143470a9787a610bec216a7
http://doi.org/10.4211/hs.923cf9a7a3bb49369a4e65d48237002b
http://doi.org/10.1029/97WR00704
http://doi.org/10.1007/BF00712121
http://doi.org/10.1002/qj.49711448006
http://doi.org/10.1175/1520-0477(1982)063&lt;1309:SCOTEO&gt;2.0.CO;2
http://doi.org/10.1039/D1RA06056B
http://doi.org/10.1175/1520-0450(2003)042&lt;0851:DCISHF&gt;2.0.CO;2
http://doi.org/10.1007/s00271-022-00787-x
https://doi.org/10.4211/hs.c0876501581f46c698727dc956cc2d73

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	sUAS Platform Collection 
	Eddy-Covariance Flux Tower Data 

	Methodology 
	Temperature Separation 
	TSEB Model 
	Validation Data from the Eddy Covariance Tower 


	Results and Discussion 
	TSEB Modeling Results 
	TSEB Component Comparison Considering Different Resistance Models 
	Time-Based Performance of the TSEB-2TQ NK Model 

	Transpiration 
	Transpiration Estimation via CEC, MREA, and FVS 
	Transpiration Comparison 


	Conclusions 
	Appendix A
	References

